The 5-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation

Eiichiro Komatsu (Department of Astronomy, UT Austin)
Astronomy Colloquium, March 24, 2008
WMAP at Lagrange 2 (L2) Point

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

- L2 is a million miles from Earth
- WMAP leaves Earth, Moon, and Sun behind it to avoid radiation from them
WMAP Measures Microwaves From the Universe

- The mean temperature of photons in the Universe today is 2.725 K (+/- 0.001 K)
- WMAP is capable of measuring the temperature contrast down to better than one part in millionth
Journey Backwards in Time

- The Cosmic Microwave Background (CMB) is the fossil light from the Big Bang.
- This is the oldest light that one can ever hope to measure.
- CMB is a direct image of the Universe when the Universe was only 380,000 years old.

- CMB photons, after released from the cosmic plasma “soup,” traveled for 13.7 billion years to reach us.
- CMB collects information about the Universe as it travels through it.
The Wilkinson Microwave Anisotropy Probe (WMAP)

• A microwave satellite working at L2
• Five frequency bands
 – K (22GHz), Ka (33GHz), Q (41GHz), V (61GHz), W (94GHz)
 – Multi-frequency is crucial for cleaning the Galactic emission

• The Key Feature: Differential Measurement
 – The technique inherited from COBE
 – 10 “Differencing Assemblies” (DAs)
 – K1, Ka1, Q1, Q2, V1, V2, W1, W2, W3, & W4, each consisting of two radiometers that are sensitive to orthogonal linear polarization modes.

• Temperature anisotropy is measured by single difference.
• Polarization anisotropy is measured by double difference.
WMAP can measure polarization as well!
WMAP Spacecraft

Radiative Cooling: No Cryogenic System

- **60K**
 - line of sight
 - back to back Gregorian optics, 1.4 x 1.6 m primaries

- **90K**
 - focal plane assembly
 - feed horns
 - secondary reflectors

- **300K**
 - thermally isolated instrument cylinder

- **Warm spacecraft with:**
 - instrument electronics
 - attitude control/propulsion
 - command/data handling
 - battery and power control

- **Deployed solar array w/ web shielding**

- **Upper omni antenna**

- **Passive thermal radiator**
WMAP on google.com/sky
WMAP 5-Year Papers

- Hinshaw et al., “Data Processing, Sky Maps, and Basic Results” 0803.0732
- Hill et al., “Beam Maps and Window Functions” 0803.0570
- Gold et al., “Galactic Foreground Emission” 0803.0715
- Wright et al., “Source Catalogue” 0803.0577
- Nolta et al., “Angular Power Spectra” 0803.0593
- Dunkley et al., “Likelihoods and Parameters from the WMAP data” 0803.0586
- Komatsu et al., “Cosmological Interpretation” 0803.0547
WMAP 5-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L. Wright
- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S. Tucker
- J. L. Weiland
- E. Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

Special Thanks to WMAP Graduates!

- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L. Verde
WMAP: Selected Results From the Previous Releases

- **2003: The first-year results**
- Age of the Universe: **13.7 (+/- 0.2)** billion years
- “Cosmic Pie Chart”
 - Atoms (baryons): **4.4 (+/- 0.4)** %
 - Dark Matter: **23 (+/- 4)** %
 - Dark Energy: **73 (+/- 4)** %
 - Erased lingering doubts about the existence of DE
- “Breakthrough of the Year #1” by Science Magazine
WMAP: Selected Results

From the Previous Releases

- **2006: The three-year results**

- **Polarization** of the cosmic microwave background measured with the unprecedented accuracy
 - The epoch of the formation of first stars (onset of the “cosmic reionization”)
 - ~400 million years after the Big Bang

- Evidence for a scale dependence of the amplitude of primordial fluctuations (the so-called “tilt”)
 - Peering into the cosmic inflation (ultra early univ!)
Universe today

- **Age:** 13.73 ± 0.12 Gyr
- **Atoms:** $4.62 \pm 0.15\%$
- **Dark Matter:** $23.3 \pm 1.3\%$
- **Vacuum Energy:** $72.1 \pm 1.5\%$

When CMB was released 13.7 B yrs ago

- A significant contribution from the *cosmic neutrino background*
How Did We Use This Map?

WMAP 5-year

-200 T(μK) +200
The Spectral Analysis

Much improved measurement of the 3rd peak!

Cosmic variance limited to $l=530$
The Cosmic Sound Wave

Angular Power Spectrum

$\ell (\ell + 1) C_\ell / 2\pi$ [μK2]

Note consistency around the 3rd-peak region

Multipole moment ℓ

WMAP 5yr
Acbar
Boomerang
CBI
The Cosmic Sound Wave

- We measure the composition of the Universe by analyzing the waveform of the cosmic sound waves.
How About Polarization?

- Polarization is a rank-2 tensor field.
- One can decompose it into a divergence-like “E-mode” and a vorticity-like “B-mode”.

Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky, Stebbins (1997)
5-Year E-Mode Polarization Power Spectrum

Errors include cosmic variance

Symbols are upper limits

$\ell(\ell+1)C_{\ell}^{EE}/2\pi$ [μK2]

Multipole moment ℓ
Measuring The Optical Depth of the Universe

- Optical Depth measured from the E-mode power spectrum:
 - $\tau(5\text{yr}) = 0.087 \pm 0.017$
 - $\tau(3\text{yr}) = 0.089 \pm 0.030$ (Page et al.; QV only)
- 3-sigma improved to 5-sigma!
- Tau form the null map (Ka-QV) is consistent with zero

Hinshaw et al.
Assuming an instantaneous reionization from $x_e=0$ to $x_e=1$ at z_{reion}, we find $z_{\text{reion}}=11.0 \pm 1.4$ (68% CL).

The reionization was not an instantaneous process at $z\sim6$. (The 3-sigma lower bound is $z_{\text{reion}}>6.7$.)
Tilting = Primordial Shape

\[l(l+1)C_l^{TT}/2\pi \, [\mu K^2] \]

Multipole moment \(l \)
“Red” Spectrum: $n_s < 1$
“Blue” Spectrum: $n_s > 1$

\[l(l+1)C_l^{TT}/2\pi \text{ [\mu K}^2] \]

Multipole moment l
With the 5-year determination of the optical depth (tau), the most dominant source of degeneracy is now $\Omega_b h^2$, rather than tau.

- WMAP-alone: $n_s=0.963 \pm 0.014$ (Dunkley et al.)
- 2.5-sigma away from $n_s=1$
Cosmic Neutrino Background

• How do neutrinos affect the CMB?

 • Neutrinos add to the radiation energy density, which delays the epoch at which the Universe became matter-dominated. The larger the number of neutrino species is, the later the matter-radiation equality, z_{equality}, becomes.

 • This effect can be mimicked by lower matter density.

 • Neutrino perturbations affect metric perturbations as well as the photon-baryon plasma, through which CMB anisotropy is affected.
CNB As Seen By WMAP

- Multiplicative phase shift is due to the change in z_{equality}
 - Degenerate with $\Omega_m h^2$
- Suppression is due to neutrino perturbations
 - Degenerate with n_s
- Additive phase shift is due to neutrino perturbations
 - No degeneracy

$\Delta \chi^2 = 8.2 \rightarrow 99.5\% \text{ CL}$

Red: $N_{\text{eff}} = 3.04$
Blue: $N_{\text{eff}} = 0$

(Bashinsky & Seljak 2004)
• The number of neutrino species is massively degenerate with $\Omega_m h^2$, which simply traces $z_{\text{equality}}=\text{constant}$.

• But, the contours close near $N_{\text{eff}} \sim 1$, in contradiction to the prediction from $z_{\text{equality}}=\text{constant}$.
Cosmic/Laboratory Consistency

- From WMAP+BAO+SN (I will explain what BAO and SN are shortly)
 - $N_{\text{eff}} = 4.4 \pm 1.5$
- From the Big Bang Nucleosynthesis
 - $N_{\text{eff}} = 2.5 \pm 0.4$
- From the decay width of Z bosons measured in LEP
 - $N_{\text{neutrino}} = 2.984 \pm 0.008$
Testing Cosmic Inflation

~5 Tests~

• Is the observable universe flat?
• Are the primordial fluctuations adiabatic?
• Are the primordial fluctuations nearly Gaussian?
• Is the power spectrum nearly scale invariant?
• Is the amplitude of gravitational waves reasonable?
CMB to Cosmology to Inflation

- Constraints on Inflation Models
 - Gravitational waves
 - Large-angle Polarization
 - Temperature-polarization correlation (TE)
 - Radiation-matter Adiabaticity
 - Overall Tilt
 - Peak Locations
 - Distance to the LSS
 - Age of the Univ.
 - Hubble Param.
 - Dark Matter Density
 - Baryon Density
 - Baryon/Photon Density Ratio
 - Matter/Radiation Density Ratio
 - 3-d Geometry
 - Primordial Power Spectrum
 - Optical Depth
 - Break DEG.
 - Low Multipoles (ISW)
 - DEG.
How Do We Test Inflation?

• The WMAP data alone can put tight limits on most of the items in the check list. (For the WMAP-only limits, see Dunkley et al.)

• However, we can improve the limits on many of these items by adding the extra information from the distance measurements:

 • *Luminosity Distances* from Type Ia Supernovae (SN)

 • *Angular Diameter Distances* from the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies
• WMAP measures the angular diameter distance to the decoupling epoch at $z=1090$.

• The distance depends on curvature AND other things, like the energy content; thus, we need more than one distance indicators, in order to constrain, e.g., Ω_m and H_0.

Komatsu et al. 35
Type Ia Supernova (SN) Data

From these measurements, we get the **relative** luminosity distances between Type Ia SNe. Since we marginalize over the absolute magnitude, the current SN data are **not** sensitive to the absolute distances.

- Riess et al. (2004; 2006) HST data
- Astier et al. (2006) Supernova Legacy Survey (SNLS)
- Wood-Vasey et al. (2007) ESSENCE data
• BAO measured from SDSS (main samples and LRGs) and 2dFGRS (Percival et al. 2007)

• Just like the acoustic oscillations in CMB, the galaxy BAOs can be used to measure the **absolute** distances
As a result..

- $-0.0181 < \Omega_k < 0.0071$ (95% CL) for $w=-1$

- The constraint driven mostly by WMAP+BAO

- BAOs are more powerful than SNe in pinning down curvature, as they are **absolute** distance indicators.
What If Dark Energy Was Not Vacuum Energy ($w = -1$)...

- WMAP+BAO -> Curvature; WMAP+SN -> w
- WMAP+BAO+SN -> Simultaneous limit
- $-0.0175 < \Omega_k < 0.0085$; $-0.11 < 1 + w < 0.14$ (95% CL)
Fun Numbers to Quote

- The curvature radius of the universe is given, by definition, by
 \[R_{\text{curv}} = \frac{3h^{-1}\text{Gpc}}{\sqrt{\Omega_k}} \]
- For negatively curved space \((\Omega_k>0)\): \(R>33h^{-1}\text{Gpc}\)
- For positively curved space \((\Omega_k<0)\): \(R>23h^{-1}\text{Gpc}\)
- The particle horizon today is \(9.7h^{-1}\text{Gpc}\)
- The observable universe is pretty flat! (Fun to teach this in class)
Implications for Inflation?

- Details aside...
 - Q. How long should inflation have lasted to explain the observed flatness of the universe?
 - A. $N_{\text{total}} > 36 + \ln(T_{\text{reheating}}/1 \text{ TeV})$
 - A factor of 10 improvement in Ω_k will raise this lower limit by 1.2.
 - Lower if the reheating temperature was $< 1 \text{ TeV}$
 - This is the check list #1
Check List #2: Adiabaticity

• The adiabatic relation between radiation and matter:

 \[3\frac{\delta \rho_{\text{radiation}}}{4\rho_{\text{radiation}}} = \frac{\delta \rho_{\text{matter}}}{\rho_{\text{matter}}} \]

• Deviation from adiabaticity: A simple-minded quantification

 • Fractional deviation of A from B = \(\frac{(A - B)}{(A + B)/2} \)

 \[\delta_{\text{adi}} = \frac{[3\frac{\delta \rho_{\text{radiation}}}{4\rho_{\text{radiation}}} - \frac{\delta \rho_{\text{matter}}}{\rho_{\text{matter}}}]/}{\{[3\frac{\delta \rho_{\text{radiation}}}{4\rho_{\text{radiation}}} + \frac{\delta \rho_{\text{matter}}}{\rho_{\text{matter}}}]/2\}} \]

• Call this the “adiabaticity deviation parameter”

 • “Radiation and matter obey the adiabatic relation to (100\(\delta_{\text{adi}}\))% level.”
The negative TE at \(l \sim 100 \) is the distinctive signature of super-horizon adiabatic perturbations (Spergel & Zaldarriaga 1997).

Non-adiabatic perturbations would fill in the trough, and shift the zeros.
Axion Dark Matter?

- CMB and axion-type dark matter are adiabatic to 8.6%.
- This puts a severe limit on axions being the dominant dark matter candidate.
Check list #3: Gaussianity

- In the simplest model of inflation, the distribution of primordial fluctuations is close to a Gaussian with random phases.

- The level of non-Gaussianity predicted by the simplest model is well below the current detection limit.

- A convincing detection of primordial non-Gaussianity will rule out most of inflation models in the literature.
Angular Bispectrum

- Non-zero bispectrum means the detection of non-Gaussianity. **It’s always easy to look for deviations from zero!**
- There are many triangles to look for, but...
 - Will focus on two classes
 - “Squeezed” parameterized by f_{NL}^{local}
 - “Equilateral” parameterized by f_{NL}^{equil}
No Detection at >95%CL

-9 < $f_{\text{NL}}^{\text{(local)}}$ < 111 (95% CL)
-151 < $f_{\text{NL}}^{\text{(equilateral)}}$ < 253 (95% CL)

These numbers mean that the primordial curvature perturbations are Gaussian to 0.1% level.

This result provides the strongest evidence for quantum origin of primordial fluctuations during inflation.
Check List #4: Scale Invariance

- For a power-law power spectrum (no $dn_s/d\ln k$):
 - WMAP-only: $n_s=0.963 \pm 0.014\pm 0.015$
 - WMAP+BAO+SN: $n_s=0.960 \pm 0.014\pm 0.013$

- 2.9 sigma away from $n_s=1$

- No dramatic improvement from the WMAP-only result because neither BAO nor SN is sensitive to $\Omega_b h^2$
Check List #5: Gravitational Waves

• How do WMAP data constrain the amplitude of primordial gravitational waves?
If all the other parameters \((n_s \text{ in particular}) \) are fixed...

- Low-\(l \) polarization gives \(r < 20 \) (95\% CL)
- + high-\(l \) polarization gives \(r < 2 \) (95\% CL)
- + low-\(l \) temperature gives \(r < 0.2 \) (95\% CL)
• Since the limit on r relies on the low-\(l\) temperature, it is strongly degenerate with n_s.

• The degeneracy can be broken partially by BAO&SN

• $r<0.43$ (WMAP-only) \rightarrow $r<0.20$ (WMAP+BAO+SN)
$n_s > 1.0$ is Disfavored, Regardless of r

- The maximum n_s we find at 95% CL is $n_s = 1.005$ for $r = 0.16$.
Lowering a “Limbo Bar”

- $\lambda \varphi^4$ is totally out. (unless you invoke, e.g., non-minimal coupling, to suppress r...)
- $m^2\varphi^2$ is within 95% CL.
 - Future WMAP data would be able to push it to outside of 95% CL, if $m^2\varphi^2$ is not the right model.
- N-flation $m^2\varphi^2$ (Easther&McAllister) is being pushed out
- PL inflation $[a(t) \sim t^p]$ with $p<60$ is out.
- A blue index ($n_s>1$) region of hybrid inflation is disfavored
Grading Inflation

- **Flatness**: $-0.0175 < \Omega_k < 0.0085$ (not assuming $w=-1$!)
- **Non-adiabaticity**: <8.6% (axion DM); <2.0% (curvaton DM)
- **Non-Gaussianity**: $-9 < \text{Local} < 111$; $-151 < \text{Equilateral} < 253$
- **Tilt** (for $r=0$): $n_s=0.960 \pm 0.014 \pm 0.013$ [68% CL]
- **Running** (for $r=0$): $-0.0728 < \frac{dn_s}{d\ln k} < 0.0087$
- **Gravitational waves**: $r < 0.20$
 - $n_s=0.968 \pm 0.015$ [68% CL]
 - $n_s>1$ disfavored at 95% CL regardless of r
What else in the interpretation paper...

• Basically, we tried everything we could do (*in time before the release*) to find deviations from the simple 6-parameter ΛCDM.

• We failed to find any. A flat ΛCDM is annoying, but it is a good fit to the data!

• The interpretation paper is a journal on the pains-taking quest to look for new physics in the WMAP data. While we failed to find any, we report on quantitative, stringent limits on the deviations from the simple ΛCDM.
Dark Energy From Distance Information Alone

- We provide a set of “WMAP distance priors” for testing various dark energy models.
 - Redshift of decoupling, $z^* = 1090.04$ (Err=0.93)
 - Acoustic scale, $l_A = \pi d_A(z^*)/r_s(z^*) = 302.10$ (Err=0.86)
 - Shift parameter, $R = \sqrt{\Omega_m H_0^2} d_A(z^*) = 1.710$ (Err=0.019)
- Correlations between these three quantities are also provided.
- Top
 - Full WMAP Data
- Bottom
 - WMAP Distance Priors
Application:
\[w(z) = w_0 + w'z/(1+z) \]

- Dark energy is pretty consistent with cosmological constant: \(w_0 = -1.09 \pm 0.12 \) & \(w' = 0.52 \pm 0.46 \) (68% CL)
• Parity violating interactions that rotate the polarization angle of CMB can produce TB and EB correlations.
These are simpler relations when there was no primordial B-mode polarization.

• How much rotation would WMAP allow?
Δα = (-1.7 +/- 2.1) degrees (68% CL)

Comparable to the astrophysical constraint from quasars and radio galaxies

Δα = (-0.6 +/- 1.5) degrees (68% CL) (Carroll 1998)

But, note the difference in path length!
• BAO helps determine the neutrino mass by giving H_0.

• **$\text{Sum}(m_\nu) < 0.61 \text{ eV}$ (95% CL)** -- independent of the normalization of the large scale structure.
After the Quest in Dark Forest...

...here is a report, captain...

TABLE 2

Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model.

<table>
<thead>
<tr>
<th>Section</th>
<th>Name</th>
<th>Type</th>
<th>WMAP 5-year</th>
<th>WMAP+BAO+SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 3.2</td>
<td>Gravitational Wave<sup>a</sup></td>
<td>No Running Ind.</td>
<td>$r < 0.43<sup>b</sup>$</td>
<td>$r < 0.20$</td>
</tr>
<tr>
<td>§ 3.1.3</td>
<td>Running Index</td>
<td>No Grav. Wave</td>
<td>$-0.090 < dn_s/d ln k < 0.019<sup>c</sup>$</td>
<td>$-0.0728 < dn_s/d ln k < 0.0087$</td>
</tr>
<tr>
<td>§ 3.4</td>
<td>Curvature<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curvature Radius<sup>g</sup></td>
<td>Positive Curv.</td>
<td>$R_{curv} > 12 \ h^{-1}\text{Gpc}$</td>
<td>$R_{curv} > 23 \ h^{-1}\text{Gpc}$</td>
<td></td>
</tr>
<tr>
<td>Negative Curv.</td>
<td>$R_{curv} > 23 \ h^{-1}\text{Gpc}$</td>
<td>$R_{curv} > 33 \ h^{-1}\text{Gpc}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 3.5</td>
<td>Gaussianity</td>
<td>Local</td>
<td>$-9 < f_{NL}^{local} < 111<sup>h</sup>$</td>
<td>N/A</td>
</tr>
<tr>
<td>§ 3.6</td>
<td>Adiabaticity</td>
<td>Equilateral</td>
<td>$-151 < f_{NL}^{equil} < 253<sup>i</sup>$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axion</td>
<td>$\alpha_0 < 0.16<sup>j</sup>$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curvaton</td>
<td>$\alpha_{-1} < 0.011<sup>k</sup>$</td>
<td>$\alpha_0 < 0.067<sup>k</sup>$</td>
</tr>
<tr>
<td>§ 4</td>
<td>Parity Violation</td>
<td>Chern-Simons<sup>n</sup></td>
<td>$-5.9^o < \Delta \alpha < 2.4^o$</td>
<td>$\alpha_{-1} < 0.0037<sup>m</sup>$</td>
</tr>
<tr>
<td>§ 5</td>
<td>Dark Energy</td>
<td>Constant w^o</td>
<td>$-1.37 < 1 + w < 0.32<sup>p</sup>$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evolving $w(z)$<sup>q</sup></td>
<td></td>
<td>$-0.11 < 1 + w < 0.14$</td>
</tr>
<tr>
<td>§ 6.1</td>
<td>Neutrino Mass<sup>s</sup></td>
<td></td>
<td>$\sum m_\nu < 1.3 \text{ eV}^t$</td>
<td>$\sum m_\nu < 0.61 \text{ eV}^u$</td>
</tr>
<tr>
<td>§ 6.2</td>
<td>Neutrino Species</td>
<td></td>
<td>$N_{eff} > 2.3^v$</td>
<td>$N_{eff} = 4.4 \pm 1.5^w \ (68%)$</td>
</tr>
</tbody>
</table>
• BAO+SN are very powerful in reducing the uncertainty in several ΛCDM parameters.

• Any parameters related to $\Omega_m h^2$ & H_0 have improved significantly.
And, we ended up here again...

TABLE 1

Summary of the cosmological parameters of ΛCDM model and the corresponding 68% intervals

<table>
<thead>
<tr>
<th>Class</th>
<th>Parameter</th>
<th>WMAP 5-year ML</th>
<th>WMAP+BAO+SN ML</th>
<th>WMAP 5-year Mean</th>
<th>WMAP+BAO+SN Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>$100\Omega_b h^2$</td>
<td>2.268</td>
<td>2.263</td>
<td>2.273 ± 0.062</td>
<td>2.265 ± 0.059</td>
</tr>
<tr>
<td></td>
<td>$\Omega_c h^2$</td>
<td>0.1081</td>
<td>0.1136</td>
<td>0.1099 ± 0.0062</td>
<td>0.1143 ± 0.0034</td>
</tr>
<tr>
<td></td>
<td>Ω_b</td>
<td>0.751</td>
<td>0.724</td>
<td>0.742 ± 0.030</td>
<td>0.721 ± 0.015</td>
</tr>
<tr>
<td></td>
<td>n_s</td>
<td>0.961</td>
<td>0.961</td>
<td>0.963$^{+0.014}_{-0.015}$</td>
<td>0.960$^{+0.014}_{-0.013}$</td>
</tr>
<tr>
<td></td>
<td>τ</td>
<td>0.089</td>
<td>0.080</td>
<td>0.087 ± 0.017</td>
<td>0.084 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>$\Delta^2_R (k_0^c)$</td>
<td>2.41×10^{-9}</td>
<td>2.42×10^{-9}</td>
<td>$(2.41 \pm 0.11) \times 10^{-9}$</td>
<td>$(2.457^{+0.0092}_{-0.0093}) \times 10^{-9}$</td>
</tr>
<tr>
<td>Derived</td>
<td>σ_8</td>
<td>0.787</td>
<td>0.811</td>
<td>0.796 ± 0.036</td>
<td>0.817 ± 0.026</td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>72.4 km/s/Mpc</td>
<td>70.3 km/s/Mpc</td>
<td>71.9$^{+2.6}_{-2.7}$ km/s/Mpc</td>
<td>70.1 ± 1.3 km/s/Mpc</td>
</tr>
<tr>
<td></td>
<td>Ω_b</td>
<td>0.0432</td>
<td>0.0458</td>
<td>0.0441 ± 0.0030</td>
<td>0.0462 ± 0.0015</td>
</tr>
<tr>
<td></td>
<td>Ω_c</td>
<td>0.206</td>
<td>0.230</td>
<td>0.214 ± 0.027</td>
<td>0.233 ± 0.013</td>
</tr>
<tr>
<td></td>
<td>$\Omega_m h^2$</td>
<td>0.1308</td>
<td>0.1363</td>
<td>0.1326 ± 0.0063</td>
<td>0.1369 ± 0.0037</td>
</tr>
<tr>
<td></td>
<td>z_{reion}</td>
<td>11.2</td>
<td>10.5</td>
<td>11.0 ± 1.4</td>
<td>10.8 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>t_0</td>
<td>13.69 Gyr</td>
<td>13.72 Gyr</td>
<td>13.69 ± 0.13 Gyr</td>
<td>13.73 ± 0.12 Gyr</td>
</tr>
</tbody>
</table>
Summary

• A simple, yet mysterious ΛCDM still fits the WMAP data, as well as the other astrophysical data sets.

• We did everything we could do to find deviations from ΛCDM, but failed.

• Significant improvements in limits on the deviations
 • Most notably, $r<0.2$ (95% CL), and $n_s>1$ is now disfavored regardless of r.
 • Many popular inflation models have been either ruled out, or being in danger!

• Significant improvements in ΛCDM parameters.
Looking Ahead...

• With more WMAP observations, exciting discoveries may be waiting for us. Two examples for which we might be seeing some hints from the 5-year data:

• Non-Gaussianity: If $f_{NL} \sim 50$, we will see it at the 3 sigma level with 9 years of data.

• Gravitational waves (r) and tilt (n_s): $m^2\phi^2$ can be pushed out of the favorable parameter region

 • $n_s > 1$ would be convincingly ruled out regardless of r.
