### Cosmic Microwave Background as the Backlight: Mapping Hot Gas in the Universe with the Sunyaev-Zeldovich Effect

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Physikalisches Kolloquium, Universität Bonn 6. Dezember, 2019



# Sky in Optical (~0.5µm)

### Sky in Microwave (~1mm)

## Sky in Microwave (~1mm)

# Light from the fireball Universe filling our sky (2.7K)

### The Cosmic Microwave Background (CMB)

# **410 photons** per cubic centimeter!!











#### Planck Collaboration

Planck 29-Month Map [100 GHz]



#### From full-sky temperature maps to...

#### Planck Collaboration













# Sunyaev-Zeldovich (SZ) Effect (Sunyaev & Zeldovich 1972)



#### Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

#### Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

### **Visible** Ground-based Telescope (Subaru)

Subaru image of RXJ1347-1145 (Medezinski et al. 2010) http://wise-obs.tau.ac.il/~elinor/clusters

### **Visible** Hubble Space Telescope

Hubble image of RXJ1347-1145 (Bradac et al. 2008)





# Multi-wavelength Data

$$I_X = \int dl \ n_e^2 \Lambda(T_X) \qquad I_{SZ} = g_\nu \frac{\sigma_T k_B}{m_e c^2} \int dl \ n_e T_e$$







#### <u>Optical</u>:

10<sup>2-3</sup> galaxies
velocity dispersion
gravitational lensing

<u>X-ray</u>:

- •hot gas (107-8 K)
- $\bullet$ spectroscopic T<sub>X</sub>
- •Intensity ~  $n_e^2L$

- <u>SZ</u> [microwave]:
- •hot gas (10<sup>7-8</sup> K)
- electron pressure
- •Intensity ~  $n_eT_eL$

### Multi-wavelength Astrophysics Rocks!

- One electromagnetic wavelength tells only a limited story!
- The X-ray intensity measures the electron **density** (squared)  $I_X = \int dl \ n_e^2 \Lambda(T_X)$
- The SZ intensity measures the electron **pressure**
- How do they the compare?
- $I_{SZ} = g_{\nu} \frac{\sigma_T k_B}{m_e c^2} \int dl \ n_e T_e$

#### They are similar, but not quite the same Interesting! This is the first time to compare SZ and X-ray images at a comparable angular resolution!



### Let's subtract a smooth component



### Ueda et al. (2018) Let's subtract a smooth component



### Ueda et al. (2018) Let's subtract a smooth component

IV

Gas density is stirred ("sloshed"), but no change in pressure!

### => First, direct evidence that sloshed gas motion is sub-sonic

<sup>32.0</sup> 13:47:30.0 Right ascension 13:47:30.0 28



www.spacetelescope.org

### **Visible** Hubble Space Telescope

Hubble image of RXJ1347-1145 (Bradac et al. 2008)

### Ueda et al. (2018) Contours: Mass map from lensing!



<sup>32.0</sup> 13:47:30.0 Right ascension 13:47:30.0

### Ueda et al. (2018) Contours: Mass map from lensing!







## One more cluster!

Kitayama et al., submitted on November 22

### Deeply cooled core of the Phoenix galaxy cluster imaged by ALMA with the Sunyaev-Zel'dovich effect

Tetsu КITAYAMA<sup>1</sup>, Shutaro UEDA<sup>2</sup>, Takuya АКАНОRI<sup>3</sup>, Eiichiro КОМАТSU<sup>4,5</sup>, Ryohei KAWABE<sup>6,7,8</sup>, Kotaro КОНNO<sup>9,10</sup>, Shigehisa ТАКАКUWA<sup>11</sup>, Motokazu ТАКIZAWA<sup>12</sup>, Takahiro TSUTSUMI<sup>13</sup>, and Kohji YOSHIKAWA<sup>14</sup>

#### Kitayama et al., submitted



Right ascension SZ and X-ray images look more alike than the previous cluster

#### Kitayama et al., submitted



Declination

### **Right ascension**

Let's subtract a smooth component

#### Kitayama et al., submitted



- Structures in the X-ray residual image indicate that gas is pushed by jets from the central galaxy
- Once again, no structure in the SZ residual! The gas motion is sub-sonic

# SZ + X-ray = Thermometer

- SZ gives the electron pressure, while X-ray gives the electron density
- Combination = Electron temperature!



Deeply cooling core?



Entropy of gas also continues to fall towards the center

<u>Highly unusual also:</u> In other clusters, entropy stabilises in the core, or the slope is more like r<sup>1.2</sup>

# Full-sky SZ Map



### Full-sky Thermal Pressure Map



Planck Collaboration

# We can simulate this in (super)computers

#### arXiv:1509.05134 [MNRAS, 463, 1797 (2016)]

## SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results

#### K. Dolag<sup>1,2\*</sup>, E. Komatsu<sup>2,3</sup> and R. Sunyaev<sup>2,4</sup>

<sup>1</sup> University Observatory Munich, Scheinerstr. 1, 81679 Munich, Germany

<sup>2</sup> Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Strasse 1, 85748 Garching, Germany

<sup>3</sup> Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583, Japan

<sup>4</sup> Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997 Russia

- Volume: (896 Mpc/h)<sup>3</sup>
- Cosmological hydro (P-GADGET3) with star formation and AGN feed back
- $2 \times 1526^3$  particles (m<sub>DM</sub>=7.5x10<sup>8</sup> M<sub>sun</sub>/h)

Dolag, EK, Sunyaev (2016)



#### y-distortion map,10 arcmin



 "The local universe simulation" reproduces the observed structures pretty well Dolag, EK, Sunyaev (2016)





# Simple Interpretation



• Randomly-distributed point sources = Poisson spectrum =  $\sum_i (flux_i)^2 / 4\pi$ 

# Simple Interpretation



 Extended sources = the power spectrum reflects intensity profiles



# Tomography of all hot gas pressure in the Universe!

- The SZ map does not tell us redshifts (or distances from us)
- By cross-correlating the SZ map with galaxies with known redshifts, we can identify the amount of gas pressure as a function of redshifts (distances)

# Auto 2-point Correlation





#### $T_{CMB}(1) \times T_{CMB}(2)$

#### $n_{gal}(1) \times n_{gal}(2)$

### **Cross 2-point Correlation**



 $T_{CMB}(1) \times T_{CMB}(2)$ 

T<sub>СМВ</sub>(1) х n<sub>gal</sub>(2) n<sub>gal</sub>(1) х T<sub>СМВ</sub>(2)

 $n_{gal}(1) \times n_{gal}(2)$ 



# Near Future? CCAT-prime



Frank's slide from the Florence meeting

### Where is CCAT-p? Cerro Chajnantor at 5600 m w/ TAO



# A Game Changer

- CCAT-prime: 6-m telescope on Cerro Chajnantor (5600 m)
- Germany makes great telescopes!
- Design study completed, the contract signed by "VERTEX

Antennentechnik GmbH", and the **Construction** 

### has begun

Frank's slide from the Florence meeting

### What is CCAT-p?



#### CCAT-prime is a high surface accuracy / throughput 6 m submm (0.3-3mm) telescope



#### Cornell U. + German consortium + Canadian consortium + ...



### Clean SZ component separation



# Summary

- New results on the SZ effect, *from small to large:*
- Highest angular resolution images of the SZ effect by ALMA - opening up a new study of cluster astrophysics via pressure fluctuations and "thermometer"
- 2. Computer simulations are able to reproduce the **low-order statistics (1-point and 2-point PDF) of pressure fluctuations in the Universe**. We (roughly) understand how gas works in the Universe
- 3. Tomography of gas pressure! This is the thermal history of the whole Universe
- 4. Near future: **CCAT-prime** to more cleanly separate dust emission from the SZ effect

### SZ Maps by ALMA



5.6 hours with 7-m array2.6 hours with 12-m array

-3

-2

-5

8.1 hours with 7-m array3.2 hours with 12-m array

З

5

2

Thank you Time Allocation Committee (TAC)! [10<sup>4</sup>]

0