Non-Gaussianity as a Probe of the Physics of the Primordial Universe

Eiichiro Komatsu (Texas Cosmology Center, University of Texas at Austin) Solvary Workshop, "Cosmological Frontiers in Fundamental Physics" May 13, 2009

How Do We Test Inflation?

- How can we answer a simple question like this:
 - "How were primordial fluctuations generated?"

Power Spectrum

- A very successful explanation (Mukhanov & Chibisov; Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner) is:
 - Primordial fluctuations were generated by quantum fluctuations of the scalar field that drove inflation.
 - The prediction: a nearly scale-invariant power spectrum in the curvature perturbation, ζ :
 - $P_{\zeta}(k) = A/k^{4-ns} \sim A/k^3$
 - where $n_s \sim 1$ and A is a normalization.

n_s<1 Observed

- The latest results from the WMAP 5-year data:
 - $n_s = 0.960 \pm 0.013$ (68%CL; for tensor modes = zero)
 - $n_s=0.970 \pm 0.015$ (68%CL; for tensor modes \neq zero)
 - tensor-to-scalar ratio < 0.22 (95%CL)
- $n_s \neq I$: another line of evidence for inflation
- Detection of non-zero tensor modes is a next important step

Komatsu et al. (2009)

Anything Else? • One can also look for other signatures of inflation. For

- example:
 - Isocurvature perturbations
 - Proof of the existence of multiple fields
 - Non-zero spatial curvature
 - Evidence for "Landscape," if curvature is negative. Rules out Landscape ideas if positive.
 - Scale-dependent n_s (running index)
 - Complex dynamics of inflation

Anything Else? • One can also look for other signatures of inflation. For

- example:
 - 95%CL limits on **Isocurvature perturbations**
 - S/(3ζ) <0.089 (axion CDM); <0.021 (curvaton CDM)
 - 95%CL limits on Non-zero spatial curvature
 - $\Omega |<0.0|8$ (for $\Omega > |$); $|-\Omega < 0.008$ (for $\Omega < |$) positive curvature negative curvature negative curvature
 - 95%CL limits on Scale-dependent ns
 - $-0.068 < dn_s/dlnk < 0.012$

Komatsu et al. (2009)

Beyond Power Spectrum

- All of these are based upon fitting the observed power spectrum.
- Is there any information one can obtain, beyond the power spectrum?

Bispectrum

- Three-point function!
- $B_{\zeta}(k_1,k_2,k_3)$ = $\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle$ = (amplitude) x (2 π)³ $\delta(k_1 + k_2 + k_3)b(k_1, k_2, k_3)$

model-dependent function

Why Study Bispectrum?

- It probes the interactions of fields new piece of information that cannot be probed by the power spectrum
- But, above all, it provides us with a <u>critical test</u> of the simplest models of inflation: "are primordial fluctuations Gaussian, or non-Gaussian?"
- Bispectrum vanishes for Gaussian fluctuations.
- Detection of the bispectrum = detection of non-Gaussian fluctuations

 The one-point distribution of WMAP map looks pretty Gaussian.

-Left to right: Q (41GHz), V (61GHz), W (94GHz). Deviation from Gaussianity is small, if any.

Spergel et al. (2008)

Inflation Likes This Result

- According to inflation (Mukhanov & Chibisov; Guth & Yi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner), CMB anisotropy was created from quantum fluctuations of a scalar field in Bunch-Davies vacuum during inflation
- Successful inflation (with the expansion factor more than e⁶⁰) demands the scalar field be almost interaction-free
- The wave function of free fields in the ground state is a Gaussian!

But, Not Exactly Gaussian

- Of course, there are always corrections to the simplest statement like this.
- For one, inflaton field **does** have interactions. They are simply weak – they are suppressed by the so-called slow-roll parameter, $\varepsilon \sim O(0.01)$, relative to the free-field action.

A Non-linear Correction to Temperature Anisotropy

- The CMB temperature anisotropy, $\Delta T/T$, is given by the curvature perturbation in the matter-dominated era, Φ .
 - One large scales (the Sachs-Wolfe limit), $\Delta T/T = -\Phi/3$.
- Add a non-linear correction to Φ :
 - $\Phi(\mathbf{x}) = \Phi_g(\mathbf{x}) + f_{NL}[\Phi_g(\mathbf{x})]^2$ (Komatsu & Spergel 2001)
 - f_{NL} was predicted to be small (~0.01) for slow-roll models (Salopek & Bond 1990; Gangui et al. 1994)

For the Schwarzschild metric, $\Phi = +GM/R$.

f_{NL}: Form of Βζ

• Φ is related to the primordial curvature perturbation, ζ , as $\Phi = (3/5)\zeta$.

• $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2$

• $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times [P_{\zeta}(k_1) P_{\zeta}(k_2) + P_{\zeta}(k_2) P_{\zeta}(k_3) + P_{\zeta}(k_3) P_{\zeta}(k_1)]$

f_{NL}: Shape of Triangle

- For a scale-invariant spectrum, $P_{\zeta}(k) = A/k^3$,
 - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6A^2/5)f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$ $x [1/(k_1k_2)^3 + 1/(k_2k_3)^3 + 1/(k_3k_1)^3]$
- Let's order k_i such that $k_3 \leq k_2 \leq k_1$. For a given k_1 , one finds the largest bispectrum when the smallest k, i.e., k₃, is very small.
 - $B_{\zeta}(k_1,k_2,k_3)$ peaks when $k_3 << k_2 \sim k_1$
 - Therefore, the shape of f_{NL} bispectrum is the squeezed triangle! k₂ k₃ (Babich et al. 2004)

B_{ζ} in the Squeezed Limit

• In the squeezed limit, the f_{NL} bispectrum becomes: $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (12/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models^{*}, the bispectrum in the squeezed limit is given by
 - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (|-n_s|) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
 - Therefore, all single-field models predict $f_{NL} \approx (5/12)(1-n_s)$.
 - With the current limit $n_s=0.96$, f_{NL} is predicted to be 0.017.

* for which the single field is solely responsible for driving inflation and generating observed fluctuations.

19

Understanding the Theorem

• First, the squeezed triangle correlates one very longwavelength mode, k_L (= k_3), to two shorter wavelength modes, k_s (= $k_1 \approx k_2$):

•
$$<\zeta_{\mathbf{k}} \zeta_{\mathbf{k}} \zeta_{\mathbf{k}} \zeta_{\mathbf{k}} > \approx <(\zeta_{\mathbf{k}})^2 \zeta_{\mathbf{k}}$$

- Then, the question is: "why should $(\zeta_{\mathbf{k}S})^2$ ever care about $\zeta_{\mathbf{k}L}$?"
 - The theorem says, "it doesn't care, if ζ_k is exactly scale invariant."

k∟>

ζ_k rescales coordinates

- The long-wavelength curvature perturbation rescales the spatial coordinates (or changes the expansion factor) within a given Hubble patch:
 - $ds^2 = -dt^2 + [a(t)]^2 e^{2\zeta} (d\mathbf{x})^2$

left the horizon already

Separated by more than H⁻¹

Gkl rescales coordinates

- Now, let's put small-scale perturbations in.
- Q. How would the conformal rescaling of coordinates change the amplitude of the small-scale perturbation?

Separated by more than H⁻¹

ζ_{kL} rescales coordinates

- Q. How would the conformal rescaling of coordinates change the amplitude of the small-scale perturbation?
- A. No change, if ζ_k is scaleinvariant. In this case, no correlation between ζ_k and (ζ_ks)² would arise.

left the horizon already

Separated by more than H⁻¹

Creminelli & Zaldarriaga (2004); Cheung et al. (2008) Real-space Proof • The 2-point correlation function of short-wavelength modes, $\xi = \langle \zeta_s(\mathbf{x}) \zeta_s(\mathbf{y}) \rangle$, within a given Hubble patch can be written in terms of its vacuum expectation value

- (in the absence of ζ_L), ξ_0 , as:
- $\zeta_{s}(\mathbf{y})$ 3-pt func. = $\langle (\zeta_S)^2 \zeta_L \rangle = \langle \xi_{\zeta_L} \zeta_L \rangle$ $= (|-n_s)\xi_0(|\mathbf{x}-\mathbf{y}|) < \zeta_L^2 >$ 24
- $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L [d\xi_0(|\mathbf{x}-\mathbf{y}|)/d\zeta_L]$ • $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L [d\xi_0(|\mathbf{x}-\mathbf{y}|)/d\ln|\mathbf{x}-\mathbf{y}|]$ • $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L (|\mathbf{-n}_s)\xi_0(|\mathbf{x}-\mathbf{y}|)$

Where was "Single-field"?

- Where did we assume "single-field" in the proof?
- For this proof to work, it is crucial that there is only one dynamical degree of freedom, i.e., it is only ζ_L that modifies the amplitude of short-wavelength modes, and nothing else modifies it.
- Also, ζ must be constant outside of the horizon (otherwise anything can happen afterwards). This is also the case for single-field inflation models.

Therefore...

- A convincing detection of $f_{NL} > 1$ would rule out **all** of the single-field inflation models, <u>regardless of</u>:
 - the form of potential
 - the form of kinetic term (or sound speed)
 - the initial vacuum state
- A convincing detection of f_{NL} would be a breakthrough.

Large Non-Gaussianity from Single-field Inflation

- $S=(1/2)\int d^4x \sqrt{-g} [R-(\partial_{\mu}\phi)^2-2V(\phi)]$
- 2nd-order (which gives P_{ζ})
 - $S_2 = \int d^4 x \, \varepsilon \, [a^3 (\partial_t \zeta)^2 a(\partial_i \zeta)^2]$
- 3rd-order (which gives B_{ζ})
 - $S_3 = \int d^4x \epsilon^2 \left[\dots a^3 (\partial_t \zeta)^2 \zeta + \dots a (\partial_i \zeta)^2 \zeta + \dots a^3 (\partial_t \zeta)^3 \right] + O(\epsilon^3)$

Cubic-order interactions are suppressed by an additional factor of ε . (Maldacena 2003) 27

Large Non-Gaussianity from Single-field Inflation

- $S=(1/2)\int d^4x \sqrt{-g} \{R-2P[(\partial_{\mu}\varphi)^2,\varphi]\}$
- 2nd-order
 - $S_2 = \int d^4x \, \varepsilon \, [a^3(\partial_t \zeta)^2/c_s^2 a(\partial_i \zeta)^2]$
- 3rd-order
 - $S_3 = \int d^4x \epsilon^2 \left[\dots a^3 (\partial_t \zeta)^2 \zeta / c_s^2 + \dots a (\partial_i \zeta)^2 \zeta + \dots a^3 (\partial_t \zeta)^3 / c_s^2 \right] +$ $O(\varepsilon^3)$ Some interactions are enhanced for $c_s^2 < I$.

[general kinetic term]

"Speed of sound" $c_s^2 = P_X/(P_X + 2XP_X)$

(Seery & Lidsey 2005; Chen et al. 2007) 28

Large Non-Gaussianity from Single-field Inflation

- $S=(1/2)\int d^4x \sqrt{-g} \{R-2P[(\partial_{\mu}\varphi)^2,\varphi]\}$
- 2nd-order
 - $S_2 = \int d^4x \, \epsilon \, [a^3(\partial_t \zeta)^2/c_s^2 a(\partial_i \zeta)^2]$
- 3rd-order
 - $O(\varepsilon^3)$

[general kinetic term]

Another Motivation For f_{NL}

- In multi-field inflation models, ζ_k can evolve outside the horizon.
- This evolution can give rise to non-Gaussianity; however, causality demands that the form of non-Gaussianity must be local!

 $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + A\chi_g(\mathbf{x}) + B[\chi_g(\mathbf{x})]^2 + \dots$

Separated by more than H⁻¹

30

Now:

- I hope that I could convince you that f_{NL} is a very powerful quantity for testing single-field inflation models.
- Let's look at the observational data!

Decoding Bispectrum

6

4

27 21

 $\frac{1(1+1)b_{1}^{L}(r)}{5}$

-6

က်

 ${\rm b}_{\rm l}^{\rm NL}(r){
m f}_{\rm NL}^{-1}$

- Hydrodynamics at z=1090 generates acoustic oscillations in the bispectrum
- Well understood at the linear level (Komatsu & Spergel 2001)
- Non-linear extension?
 - Nitta, Komatsu, Bartolo, Matarrese & Riotto, arXiv: 0903.0894
 - f_{NL}^{local}~0.5

Measurement

• Use everybody's favorite: χ^2 minimization.

- with respect to $A_i = (f_{NL}^{local}, f_{NL}^{equilateral}, b_{src})$
- B^{obs} is the observed bispectrum
- B⁽ⁱ⁾ is the theoretical template from various predictions

$$\sum_{i} A_{i} B_{l_{1}l_{2}l_{3}}^{(i)} \Big)^{2}$$

$$\sigma_{l_1 l_2 l_3}^2$$

33

Journal on f_{NL} (95%CL)

- Komatsu et al. (2002) Komatsu et al. (2003) Spergel et al. (2007) Komatsu et al. (2008)
- $-3500 < f_{NL} < 2000$ [COBE 4yr, $I_{max}=20$] • $-58 < f_{NL} < 134$ [WMAP lyr, $I_{max} = 265$] • $-54 < f_{NL} < 114$ [WMAP 3yr, $I_{max} = 350$] • $-9 < f_{NL}^{local} < 111 [WMAP 5yr, I_{max}=500]$

Latest on fni (Fast-moving field!)

- CMB (WMAP5 + most optimal bispectrum estimator)
 - -4 < f_{NL} < 80 (95%CL)
 - $f_{NL} = 38 \pm 21$ (68%CL)

- Large-scale Structure (Using the SDSS power spectra)
 - $-29 < f_{NL} < 70 (95\% CL)$
 - $f_{NL} = 31^{+16}_{-27}$ (68%CL)

Smith, Senatore & Zaldarriaga (2009)

Slosar et al. (2009)

Weak 2-o "Hint"?

- So, currently we have something like f_{NL}~40±20 from the WMAP 5-year data, and 30±15 from WMAP5+LSS.
- Without a doubt, we need more data...
 - WMAP7 is coming up (early next year)
 - WMAP9 in ~2011–2012
- And...

Planck!

- Planck satellite is scheduled to be launched TOMORROW, from French Guiana.
- Planck's expected 68%CL errorbar is ~5.
 - Therefore, if f_{NL}~40, we would see it at 8σ. If ~30, 6σ. Either way, IF (big if) f_{NL}~30–40, we will see it unambiguously with Planck, which is expected to deliver the first-year results in ≥2012.

Trispectrum: Next Frontier?

- The local form bispectrum, $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) f_{NL}[(6/5)P_{\zeta}(k_1)P_{\zeta}(k_2) + cyc.]$
- is equivalent to having the curvature perturbation in position space, in the form of:
 - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2$
 - This provides a useful model to parametrize non-Gaussianity, and generate initial conditions for, e.g., N-body simulations.
- This can be extended to higher-order:
 - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$ ³⁸

Local Form Trispectrum

- For $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$, we obtain the trispectrum:
 - $T_{\zeta}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4})=(2\pi)^{3}\delta(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4})$ { $g_{NL}[(54/25)P_{\zeta}(k_{1})P_{\zeta}(k_{2})P_{\zeta}(k_{3})+cyc.] +$ ($f_{NL})^{2}[(18/25)P_{\zeta}(k_{1})P_{\zeta}(k_{2})(P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{3}|)+P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{4}|))+cyc.]$ }

(Slightly) Generalized Trispectrum • $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$ $\{g_{NL}[(54/25)P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_3)+cyc.]$ +TNL[(|8/25)P $\zeta(k_1)$ P $\zeta(k_2)(P\zeta(|k_1+k_3|)+P\zeta(|k_1+k_4|))+cyc.]$ } The local form consistency relation,

 $T_{NL}=(f_{NL})^2$, may not be respected – additional test of multi-field inflation!

Trispectrum: Next Frontier

- A new phenomenon: many talks given at the IPMU non-Gaussianity workshop emphasized the importance of the trispectrum as a source of additional information on the physics of inflation.
- $T_{NL} \sim f_{NL}^2$; $T_{NL} \sim f_{NL}^{4/3}$; $T_{NL} \sim (isocurv.)^* f_{NL}^2$; $g_{NL} \sim f_{NL}$; $g_{NL} \sim f_{NL}^2$; or they are completely independent
- Shape dependence? (Squares from ghost condensate, diamonds and rectangles from multi-field, etc)

Large-scale Structure of the Universe

• New frontier: large-scale structure of the universe as a probe of primordial non-Gaussianity

New, Powerful Probe of f_{NL}

- f_{NL} modifies the power spectrum of galaxies on very large scales
 - -Dalal et al.; Matarrese & Verde
 - -Mcdonald; Afshordi & Tolley
- The statistical power of this method is **VERY** promising
 - $-SDSS: -29 < f_{NL} < 70 (95\% CL);$ Slosar et al.
 - -Comparable to the WMAP 5-year limit already
 - -Expected to beat CMB, and reach a sacred region: f_{NL}~1

Effects of fNL on the statistics of PEAKS

• The effects of f_{NL} on the power spectrum of peaks (i.e., galaxies) are profound.

• How about the bispectrum of galaxies?

Previous Calculation

- Scoccimarro, Sefusatti & Zaldarriaga (2004); Sefusatti & Komatsu (2007)
 - Treated the distribution of galaxies as a continuous distribution, biased relative to the matter distribution:

•
$$\delta_g = b_1 \delta_m + (b_2/2) (\delta_m)^2 +$$

- Then, the calculation is straightforward. Schematically: • $<\delta_g^3> = (b_1)^3 < \delta_m^3> + (b_1^2 b_2) < \delta_m^4> + ...$ Non-linear Gravity Non-linear Bias Bispectrum
- **Primordial NG** 46

 $\bullet \bullet \bullet$

$$\begin{aligned} & \operatorname{Previous} \ \mathbf{Ca} \\ & B_g(k_1, k_2, k_3, z) \\ &= 3b_1^3 f_{\mathrm{NL}} \Omega_m H_0^2 \left[\frac{P_m(k_1, z)}{k_1^2 T(k_1)} \frac{P_m}{k_2^2} \right] \\ &+ 2b_1^3 \left[F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2) P_m(k_1, z) P_m \right] \\ &+ b_1^2 b_2 \left[P_m(k_1, z) P_m(k_2, z) + (\mathbf{k}_1, z) P_m \right] \end{aligned}$$

• We find that this formula captures only a part of the full contributions. In fact, this formula is sub-dominant in the squeezed configuration, and the new terms are dominant.⁴⁷

alculation

Primordial NG $\frac{m(k_2, z)}{2T(k_2)} \frac{k_3^2 T(k_3)}{D(z)} + (\text{cyclic})$ $m_m(k_2, z) + (\text{cyclic}) \begin{bmatrix} \text{Non-linear} \\ \text{Gravity} \end{bmatrix}$ cyclic) Non-linear Bias

Non-linear Gravity

Non-linear Galaxy Bias

.4

.2

- There is no F₂: less suppression at the squeezed, and less enhancement along the elongated triangles.
- Still peaks at the equilateral or elongated forms. ⁵⁰

Primordial NG (SK07)

$3b_1^3 f_{\rm NL} \Omega_m H_0^2 \left[\frac{P_m(k_1, z)}{k_1^2 T(k_1)} \frac{P_m(k_2, z)}{k_2^2 T(k_2)} \frac{k_3^2 T(k_3)}{D(z)} + (\text{cyclic}) \right]$

• Notice the factors of k^2 in the denominator.

This gives the peaks at the squeezed configurations. 51

10-4

New Terms

- But, it turns our that Sefusatti & Komatsu's calculation, which is valid only for the continuous field, misses the dominant terms that come from the statistics of PEAKS.
- Jeong & Komatsu, arXiv:0904.0497

$$Match
Multiply for equation of equations of equations of equations of equations of equations and equations of equation$$

 N-point correlation function of peaks is the sum of Mpoint correlation functions, where $M \ge N$.

arrese, Lucchin & Bonometto (1986) rmula

 $(\zeta_{31}) + \zeta_h(x_1, x_2, x_3)$

J	$\int \frac{n}{\sum}$	\sum^{n-m_1}	$\nu^n \sigma_R^{-n}$
$\binom{3}{3}$	$\sum_{m_1=0}$	$\sum_{m_2=0}$	$m_1!m_2!m_3!$

 $\left(\begin{array}{c} \cdots, \mathbf{x}_2, \mathbf{x}_3, \cdots, \mathbf{x}_3 \\ \operatorname{times} & m_3 \operatorname{times} \end{array} \right)$

 $\left| \begin{array}{c} x \\ es \end{array} \right\rangle \left\} \right|$

53

Bottom Line

The bottom line is:

- The power spectrum (2-pt function) of peaks is sensitive to the power spectrum of the underlying mass distribution, and the bispectrum, and the trispectrum, etc.
 - Truncate the sum at the bispectrum: sensitivity to f_{NL}
 - Dalal et al.; Matarrese&Verde; Slosar et al.; Afshordi&Tolley

Bottom Line

The bottom line is:

- The bispectrum (3-pt function) of peaks is sensitive to the bispectrum of the underlying mass distribution, and the trispectrum, and the quadspectrum, etc.
 - Truncate the sum at the trispectrum: sensitivity to T_{NL} (~ f_{NL}^2) and $g_{NL}!$
 - This is the new effect that was missing in Sefusatti & Komatsu (2007).

• Plus 5-pt functions, etc...

 $+ \frac{\nu^4}{\sigma_{\rm T}^4} \left[\xi_R^{(2)}(x_{12}) \xi_R^{(2)}(x_{23}) + (\text{cyclic}) \right]$

 $+ \frac{\nu^4}{2\sigma_R^4} \left[\xi_R^{(4)}(\boldsymbol{x}_1, \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) + (\text{cyclic}) \right]$

New Bispectrum Formula $B_h(k_1, k_2, k_3)$ $=b_1^3 \left[B_R(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) + \frac{b_2}{b_1} \left\{ P_R(k_1) P_R(k_2) + (\text{cyclic}) \right\} \right]$ $+\frac{\delta_c}{2\sigma_P^2} \int \frac{d^3q}{(2\pi)^3} T_R(\boldsymbol{q}, \boldsymbol{k}_1 - \boldsymbol{q}, \boldsymbol{k}_2, \boldsymbol{k}_3) + (\text{cyclic}) \bigg].$

- First: bispectrum of the underlying mass distribution.
- Second: non-linear bias

Third: trispectrum of the underlying mass distribution.

Local Form Trispectrum $\Phi = (3/5)\zeta$ $\Phi(\boldsymbol{x}) = \phi(\boldsymbol{x}) + f_{\rm NL} \left[\phi^2(\boldsymbol{x}) - \langle \phi^2 \rangle \right] + g_{\rm NL} \phi^3(\boldsymbol{x})$

 $T_{\Phi}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4)$ $= 6g_{\rm NL} \left[P_{\phi}(k_1) P_{\phi}(k_2) P_{\phi}(k_3) + (\text{cyclic}) \right] + 2f_{\rm NL}^2$ × $[P_{\phi}(k_1)P_{\phi}(k_2) \{P_{\phi}(k_{13}) + P_{\phi}(k_{14})\} + (\text{cyclic})]$

- For general multi-field models, f_{NL}^2 can be more generic: often called T_{NL} .
- Exciting possibility for testing more about inflation! 58

Shape Results

- The primordial non-Gaussianity terms peak at the squeezed triangle.
- f_{NL} and g_{NL} terms have the same shape dependence:
 - For $k_1 = k_2 = \alpha k_3$, (f_{NL} term)~ α and (g_{NL} term)~ α
- $f_{NL}^2(T_{NL})$ is more sharply peaked at the squeezed:
 - $(f_{NL}^2 term) \sim \alpha^3$

Key Question

• Are g_{NL} or T_{NL} terms important?

Summary

- Non-Gaussianity is a new, powerful probe of physics of the early universe
 - It has a best chance of ruling out all of the single-field inflation models at once.
- $f_{NL} \sim 2\sigma$ at the moment, wait for WMAP 9-year (2011) and Planck (≥ 2012) for more σ 's (if it's there!)
- To convince ourselves of detection, we need to see the acoustic oscillations, and the same signal in the bispectrum and trispectrum, of both CMB and the large-scale structure of the universe.

Now, let's pray:

• May Planck succeed!

Now, let's pray:

May the signal be there!