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How Do We Test Inflation?

® How can we answer a simple question like this:

® “How were primordial fluctuations generated?”



Power Spectrum

® A very successful explanation (Mukhanov & Chibisov;
Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt &
Turner) is:

® Primordial fluctuations were generated by quantum
fluctuations of the scalar field that drove inflation.

® T[he prediction: a nearly scale-invariant power
spectrum in the curvature perturbation, C:

® P¢(k) = A/k*"s ~ A/K?

® where n~| and A is a normalization.



Komatsu et al. (2009)
ns<| Observed

® The latest results from the WMAP 5-year data:
® Ns=0.960 £ 0.013 (68%CL,; for tensor modes = zero)
® Ns=0.970 * 0.015 (68%CL; for tensor modes + zero)

® tensor-to-scalar ratio < 0.22 (95%CL)

® n.# |:another line of evidence for inflation

® Detection of non-zero tensor modes is a next important
step
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Anything Else!?

® One can also look for other signatures of inflation. For
example:

® Isocurvature perturbations
® Proof of the existence of multiple fields
® Non-zero spatial curvature

® Evidence for “Landscape,’ if curvature is negative.
Rules out Landscape ideas if positive.

® Scale-dependent ns (running index)

® Complex dynamics of inflation °



Komatsu et al. (2009)

Anything Else!?

® One can also look for other signatures of inflation. For
example:

® 95%CL limits on Isocurvature perturbations

® S/(3C) <0.089 (axion CDM); <0.021 (curvaton CDM)

® 95%CL limits on Non=-zero spatial curvature

e 0-1<0.018 (for Q>1); 1-0<0.008 (for Q<I)

positive curvature negative curvature

® 95%CL limits on Scale-dependent ns

¢ -0.068 < dns/dink < 0.012



Beyond Power Spectrum

® All of these are based upon fitting the observed power
spectrum.

® [s there any information one can obtain, beyond the
power spectrum?



Bispectrum

® Three-point function!

® Br(ki, k> ks)
= <CkICk2Ck3> = (amplitude) x (217)30 (k| +ka+k3)b(ki,ka,k3)

model-dependent function
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Why Study Bispectrum?

It probes the interactions of fields - new piece of
information that cannot be probed by the power
spectrum

But, above all, it provides us with a critical test of the
simplest models of inflation:“are primordial
fluctuations Gaussian, or non-Gaussian?”

Bispectrum vanishes for Gaussian fluctuations.

Detection of the bispectrum = detection of non-
Gaussian fluctuations y
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Spergel et al. (2008)
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* The one-point distribution of WMAP map looks
pretty Gaussian.

—Left to right: Q (41GHz), V (61GHz), W (94GHz).
*Deviation from Gaussianity is small, if any.
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Inflation Likes This Result

® According to inflation (Mukhanov & Chibisov; Guth & Yi;
Hawking; Starobinsky; Bardeen, Steinhardt & Turner),
CMB anisotropy was created from quantum

fluctuations of a scalar field in Bunch-Davies
vacuum during inflation

® Successful inflation (with the expansion factor more than
e®®) demands the scalar field be almost interaction-free

® The wave function of free fields in the ground state is a
Gaussian!
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But, Not Exactly Gaussian

® Of course, there are always corrections to the simplest
statement like this.

® For one, inflaton field does have interactions. They are
simply weak — they are suppressed by the so-called
slow-roll parameter, E~0O(0.01), relative to the free-field
action.
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A Non-linear Correction to
Temperature Anisotropy

® The CMB temperature anisotropy, AT/T, is given by the
curvature perturbation in the matter-dominated era, .

® One large scales (the Sachs-Wolfe limit), AT/T=—®/3.

For the Schwarzschild

® Add a non-linear correction to ®: metric, »=+GM/R.
& DO(x) = Dy(x) + fnr[DPy(x)]? (Komatsu & Spergel 2001)

® fnL was predicted to be small (~0.01) for slow-roll
models (Salopek & Bond |1990; Gangui et al. 1994)
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fnL: Form of Be

® @ is related to the primordial curvature
perturbation, C, as $=(3/5)C.

® T(x) = Cg(x) + (3/5)fn[Ce(X)]?

o Br(ki,kaks3)=(6/5)fn x (217)30 (ki +kat+k3) x
[Pc(ki)Pg(kz) + Pg(ke)Pg(ks) + Pg(ks)Pr(ki)]
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fnL: Shape of Triangle

® For a scale-invariant spectrum, P¢(k)=A/k?,

® Br(ki,kyk3)=(6A%5)fnL x (2TT)30(k+katks3)
x [1/(kik2)® + 1/(kak3)3 + 1/(kski)?]

® [et’s order ki such that ks3<k,<k;. For a given ki,
one finds the largest bispectrum when the
smallest k, i.e., k3, is very small.

® Br(ki,kaks3) peaks when k3 << ky~k|

® Therefore, the shape of faL bispectrum is the

squeezed triangle! K,
—_ k

(Babich et al. 2004) K ’ 17

1




Bc in the Squeezed Limit

® |n the squeezed limit, the fnL bispectrum becomes:
Br(ki,ka,ks3) = (12/5)fne x (217)30(k 1 +ka+k3) x Pe(ki)Pe(ks)

18



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

® For ANY single-field models®, the bispectrum in the
squeezed limit is given by

® Br(kikzk3) = (1-ns) x (217)30(ki+Kk2+k3) x Prc(ki)Pr(ks)

® Therefore, all single-field models predict fne=(5/12)(1—ns).

® With the current limit ns=0.96, fnL is predicted to be 0.017.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 19



Understanding the heorem

® First, the squeezed triangle correlates one very long-
wavelength mode, k. (=k3), to two shorter wavelength

modes, ks (=k|=k2):

® <CkiCioli3> = <(Cks)*Cuk>

® Then, the question is:“why should (Cks)? ever care
about Ty ?”

® The theorem says, “it doesn’t care, if Ck is exactly

scale invariant.’
20



CkL rescales coordinates

Separated by more than H-!

® The long-wavelength
curvature perturbation
rescales the spatial
coordinates (or changes the
expansion factor) within a
given Hubble patch:
® ds2=—dt2+[a(t)]2e?5(dx)?

sz
left the horizon already\




CkL rescales coordinates

Separated by more than H-!

® Now, let’s put small-scale
perturbations in.

e Q.How would the
conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation?

sz
left the horizon already\




CkL rescales coordinates

Separated by more than H-!

e Q.How would the

conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation!?

® A.No change, if Ck is scale-
invariant. In this case, no
correlation between Ty and
(Cks)? would arise.

CkL
left the horizon already\ 23




Creminelli & Zaldarriaga (2004); Cheung et al. (2008)
Real-space Proof

® The 2-point correlation function of short-wavelength
modes, E=<Ts(X)Ts(y)>, within a given Hubble patch
can be written in terms of its vacuum expectation value
(in the absence of C1), &, as:

® &= &o(|x-yl|) + CL[d&o(|x~y]|)/dTL]
® &u = &o(|x—y|) + T [dEo(|x—y|)/dIn|x-y]]
® &= &o(|x=yl|) + T (I-ns)&o(|x=y])

3-pt func. = <(Cs)?CL> = <&u.C>
= (1-ns)&o(|x-y[)<TL>>




Where was “Single-field™!

® Where did we assume “single-field” in the proof?

® For this proof to work, it is crucial that there is only

one dynamical degree of freedom, i.e., it is only T, that
modifies the amplitude of short-wavelength modes, and

nothing else modifies it.

® Also, C must be constant outside of the horizon
(otherwise anything can happen afterwards). This is also
the case for single-field inflation models.
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Therefore...

® A convincing detection of fnL > | would rule out all of
the single-field inflation models, regardless of:

® the form of potential
® the form of kinetic term (or sound speed)
® the initial vacuum state

® A convincing detection of fnL would be a breakthrough.

26



Large Non-Gaussianity
from Single-field Inflation

® S=(1/2)fd* v~g [R~(0u®P)-2V(¢p)]
® )nd-order (which gives Pt)
o S=[d & [a*(3:0) ()]
® 3rd-order (which gives Br)
® S3=[d' €2 [...a%(0:0)*C+...a(0iC)*C +...a%(0:C)*] + O(&?)

Cubic-order interactions are suppressed by an additional factor of €.
(Maldacena 2003) 27



Large Non-Gaussianity
from Single-field Inflation

o S=(1/2)fd** v—g {R-2P[(0,)1LP]} [general kinetic term]

® nd-order

“Speed of sound”
® $=[dx € [a*(0:L) e’ ~a(0T)']  22p /(Py+2XPro)

® 3rd-order
o S3=[d*x €2 [...a%(0:C)*T/cs? +...a(0iC)*C +...a*(0:C)3/cs?] +
O(&?)

Some interactions are enhanced for c¢;2<l.
(Seery & Lidsey 2005; Chen et al. 2007) 28



Large Non-Gaussianity
from Single-field Inflation

® S=(1/2)[d*x v/—g {R-2P[(Ou®)%,p]} [seneral kinetic term]
® 2nd-order

® 5=[d* € [a°(0:C)*/cs™—a(0iC)]

® 3rd-order /\

® S3=[d% €?[...a%*(0:C)*T/cs> +..k.1c1(8i'€)2'§ +...a%(0:C)3/cs?] +
O(&%)

“Speed of sound”
cs?=P,x/(Px+2XP,xx)

Some interactions are enhanced for c¢;2<l. /\
(Seery & Lidsey 2005; Chen et al. 2007) 29




Another Motivation For fni

Separated by more than H-!

In multi-field inflation

models, Tk can evolve
outside the horizon.

This evolution can give rise
to non-Gaussianity;
however, causality demands
that the form of non-
Gaussianity must be local!

X|
C(x)=TCg(x)+(3/5)NL[Ce() ]+ AXe(X) +B[Xs(X)]*+. ..
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Now:

® | hope that | could convince you that fnL is a very
powerful quantity for testing single-field inflation

models.

® | et’s look at the observational data!
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Decoding Bispectrum

® Hydrodynamics at z=1090
generates acoustic
oscillations in the
bispectrum

® \Well understood at the

linear level (Komatsu &
Spergel 2001)

® Non-linear extension?

® Nitta, Komatsu, Bartolo,

Matarrese & Riotto, arXiv:

0903.0894

® fNLIocaI.,O.S
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Measurement

® Use everybody’s favorite: X? minimization.

® Minimize: (

Bobs o Zl AZB(Z) )2

9 l1l2ls PYE

X = Z >
O, 1ol

2<1y <lp<l3 11213

® with respect to Ai=(fnLo%, fyeauilateral b, )
® Bobs js the observed bispectrum

e B()js the theoretical template from various predictions
33



Journal on fnL (957%CL)

® —3500 < fNL < 2000 [COBE 4)’I", Imax=20 ] Komatsu et al. (2002)
® 58 <\ < 134 [WMAP lyr, [max=265] Komatsu et al. (2003)
® 54 <fnL < |14 [WMAP 3yr, nax=350] Spergel et al. (2007)

® -9 <fnlo@ < 111 [WMAP 5yr, Imax=5007 Komatsu et al. (2008)
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Latest on fNL

(Fast-moving field!)

o CMB (WMAPS5 + most optimal bispectrum estimator)
® -4 < fnL < 80 (957%CL)
o fnL=38% 21 (68%CL)

Smith, Senatore & Zaldarriaga (2009)

® [arge-scale Structure (Using the SDSS power spectra)
® -29 <fnL <70 (957%CL)
o fnL=31 *1%,7 (68%CL)

Slosar et al. (2009)
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Weak 2-0 “Hint’’?

® 5o, currently we have something like fne~40120 from
the WMAP 5-year data, and 3015 from WMAPS5+LSS.

® \Without a doubt, we need more data...

® WMAP7 is coming up (early next year)

® WMAP9 in ~2011-2012
® And...
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Planck!

® Planck satellite is scheduled to be launched
TOMORROW, from French Guiana.

® Planck’s expected 68%CL errorbar is ~5.

® Therefore, if fni~40, we would see it at 80. If ~30, 60.
Either way, IF (big if) fne~30—40, we will see it
unambiguously with Planck, which is expected to
deliver the first-year results in =201 2.
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Trispectrum: Next Frontier!

® The local form bispectrum,
Br(ki,k2,k3)=(217)30 (k| +k2+k3)fNL[(6/5)Pr(ki)Pe(k2)+eyc.]

® s equivalent to having the curvature perturbation in position
space, in the form of:

® T(x)=Tg(x) + (3/5)fnL[Ce(X)]?

® This provides a useful model to parametrize non-
Gaussianity, and generate initial conditions for, e.g., N-body
simulations.

® This can be extended to higher-order:

® T(x)=Tg(x) + (3/5)fNL[C()]* + (9/25)gnL[Te(x)] =



Local Form Irispectrum

® For T(x)=Tg(x) + (3/5)fNL[Ce(Xx)]* + (9/25)gNL[Te(X)]°, we
obtain the trispectrum:
® T?_:(k|,kz,k3,k4)=(21'l')36(k|+k2+k3+k4)
{gnL[(54/25)P¢(ki)Pr(k2)Pc(k3)+cyc.] +
(Fnn)*[(18/25)Pg(ki)Pe(k2) (Pe(|ki+ks|) +Pg(|ki+ka|)) +cyc.]}

ks K> K3 K>
k4 <\ <\
K| k4 K|




1000

le-06

le-09

Kogo & Komatsu (20006 )

Trispectrum: if fac Is ~350,
excellent cross-check for Planck

trispectrum
— — == bispectrum
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(Slightly) Generalized

Irispectrum

o Tr(kikaks ks)=(217)30(k+kotks+ks)
{gnL[(54/25)P¢(ki)Pr(k2)Pz(ks)+cyc.]
+TNL[(18/25)Pg(ki)Pg(ka) (Pr(|ki+ks|)+Pg(|ki+ka]))+cyc.]]

The local form consistency relation,

TnL=(fne)?, may not be respected —
additional test of multi-field inflation!




Trispectrum: Next Frontier

® A new phenomenon: many talks given at the IPMU non-
Gaussianity workshop emphasized the importance of
the trispectrum as a source of additional information
on the physics of inflation.

® TnL~ fnes T ~ fNLY3; T ~ (isocury.)* e gne ~ N
gL ~ faL%; or they are completely independent

® Shape dependence! (Squares from ghost condensate,
diamonds and rectangles from multi-field, etc)
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Large-scale Structure of the
Universe

® New frontier: large-scale structure of the universe as
a probe of primordial non-Gaussianity
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New, Powerful Probe of faL

fnL modifies the power spectrum
of galaxies on very large scales

—Dalal et al.; Matarrese & Verde [~ " -

—~Mcdonald; Afshordi & Tolley 2 '*r 4. o —
» The statistical power of this =

method is VERY promising g 10

—SDSS: —29 < fn <70 (95%CL); _

Slosar et al.
—Comparable to the WMAP 5-years

k,fi)/b(k,0

O = N0 W
UL

b

limit already 001

—EXxpected to beat CMB, and reach a
sacred region: fnL~1 44



Effects of fnL on the statistics
of PEAKS

® The effects of faL on the power spectrum of peaks (i.e.,
galaxies) are profound.

® How about the bispectrum of galaxies!?
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Previous Calculation

® Scoccimarro, Sefusatti & Zaldarriaga (2004); Sefusatti &
Komatsu (2007)

® Treated the distribution of galaxies as a continuous
distribution, biased relative to the matter distribution:

® 6g — b|6m + (b2/2)(6m)2 + ...
® Then, the calculation is straightforward. Schematically:

® <6g3> — (b|)3<6m3> + (b|2b2)<6m4> + ...
Non-linear Gravity ~ Non-linear Bias Bispectrum
Primordial NG 46



Previous Calculation

BQ (klv kQ’ k3’ Z) Primordial NG

Rn(k‘la Z) P?'n(kQa Z) kﬁT(ks)
kT (k1) k3T(k2)  D(z)

3 | (s .\ Non-i
+2b Fz( )(klv ko) P (b1, 2) P (2, 2) + (CyChC)_ g:a(/?;’ar

= 31)% fNL (). Hg | (cyclic)

-1 b%bg [Pm (k’-l, Z)Pm (k’-g, Z) + (Cyclic)] Non-linear Bias

® We find that this formula captures only a part of the full
contributions. In fact, this formula is sub-dominant in the
squeezed configuration, and the new terms are dominant.4



(a) squeezed triangle (b) elongated triangle (c) folded triangle

(k =k >>k,) (k, =k +k,) (k, =2k, =2k,)
k
2 k k
 % M 2 k,
k1
k k

(d) isosceles triangle (e) equilateral triangle
(k >k =k ) (k =k =k)




Non-linear Gravity

quilatera

BG

00 02 04 06 08 1.0
ks/k,

ob3 | S (ky, k) P (K, 2) P (K2, 2) + (cyclic) |||

- .6

® For a given ki, vary kz and k3, with k3 <k <k

® F;(ko,ks) vanishes in the squeezed limit, and peaks at the _2
elongated triangles. 4
0



Non-linear Galaxy Bias

1.0

0.9
+«" 0.8
\N
x 0.7

0.6

0.5
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

k. /K. k. /k.
bibo [P, (k1, 2) P (ka, 2) + (cyclic)

® There is no F: less suppression at the squeezed, and
less enhancement along the elongated triangles.

P2
k =0.01[h/Mpc]

® Still peaks at the equilateral or elongated forms.

, P2
k =0.05[h/Mpc]
0.8




Primordial NG (SKO07)

N

queezed equilatera
BI"IG
fnl
| k,=0.01[h/Mpc] |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
/K

i P, ( k1, Z) P ( Ko, 2 ) A% T( k3 )

303 N H

k2T (ki) k3T(ke) D(z)

® Notice the factors of k% in the denominator.

0.6 0.8

(cyclic)

® This gives the peaks at the squeezed configurations. s:

—
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New lerms

® But, it turns our that Sefusatti & Komatsu’s calculation,
which is valid only for the continuous field, misses the

dominant terms that come from the statistics of
PEAKS.

® Jeong & Komatsu, arXiv:0904.0497

N 7S Donghui Jeong 52



Matarrese, Lucchin & Bonometto (1986)

MLB Formula

1l 4+ &n(x12) + En(xo3) + Ep(31) + Cul@y, 2, 3)

n—1rTr1 —nN

1 2 ( 2) Vo
R
— exp E En (i) + E E E
2 i) m1!molma!

n=3 Umi1=0 mo=0

X .
gR m1 times mo times msg times

TL — T -
_3 I/ O-R g(n) '/I/" . .. . : '/I/b
n! O n times

® N-point correlation function of peaks is the sum of M-
point correlation functions, where M=N. 53

(1) (fl}l*°°° y Ly L2y =0y LR, L3, - q-’133>




Bottom Line

® The bottom line is:

® The power spectrum (2-pt function) of peaks is
sensitive to the power spectrum of the underlying mass
distribution, and the bispectrum, and the trispectrum,
etc.

® Truncate the sum at the bispectrum: sensitivity to fnL

® Dalal et al.; Matarrese&Verde; Slosar et al.;
Afshordi&Tolley
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Bottom Line

® The bottom line is:

® The bispectrum (3-pt function) of peaks is sensitive to
the bispectrum of the underlying mass distribution, and
the trispectrum, and the quadspectrum, etc.

® Jruncate the sum at the trispectrum: sensitivity to
TnL (~fnL?) and g

® This is the new effect that was missing in Sefusatti &
Komatsu (2007).
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Real-space 3pt Function

i 3
Qh(mlam‘ZamS) (,)(wlﬁm‘Z?'f'Eg)
UR
% [ (2) 2 -
+ — [ p (T12)E5 (223) + (c:ychc)]
OR
V[ .
-+ (ZEl L1, LD, 3) - (Cy(ill(:)]
QUR i

® Plus 5-pt functions, etc... .



New Bispectrum Formula
Bh(kla k?a k3>

bf |:BR(161, ]CQ, kg) T — {PR(/{ )PR(IQ) (CyCliC)}

0, d>q
L 1 ki —q. k. k velie) | .
+20% / 27)2 rR(q, k1 — q k2, k3) + (cyclic)

® First: bispectrum of the underlying mass distribution.

® Second: non-linear bias

° ° 570
® T[hird: trispectrum of the underlying mass distribution.



Local Form Irispectrum

d=(3/5)T

']—‘(I)(kla k‘Za k3? k—l)

O (x) — (&%),

| + gnLo” ()

= 6gNL [Py (k1) Py(k2) Py (ks) + (cyclic)] + 2 f5

X P(.‘)(A ) (,D(AZ) {Po(]‘l;) T Po(

® For general multi-field models, fnL2 can be more
generic: often called TnL.

® Exciting possibility for testing more about inflation!



Local Form Irispectrum
d=(3/5)C
1o (K1, ko, k3, ky)
= 6gNL [Py (k1) Py (ko )Py (k3) + (cyclic)] + 231
% [Py (k1 )Py (ko) {Py(k13) + Py (k1a)} + (cyclic)]

| QG <|(2\ |(3 |(2
"t _

K| k4 K|

gNL fnL? (or TNL)




Esqueezed

0.6 F

folqeq ‘

0.0 0.2 0.4 0.6

fnl fnl
k,=0.01[h/Mpc] 5B SN A k,=0.05[h/Mpc]
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
/k
1.0
0.9
{O.B
x 0.7

nG nG
Bgnl 0.6 Bgn|
k‘=0.01[h/Mpc] k|=0.05[h/Mpc]

il

0.0 0.2 0.4 0.6

0.0 0.2 0.4 0.6
i/

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

BnG

nG
Bfnl2 : fni2
k =0.01[h/Mpc] k =0.05[h/Mpc]

0.8 1.0 00 02 04 06 08 1.0
3 60
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Shape Results

® The primordial non-Gaussianity terms peak at the
squeezed triangle.

® fnL and gnL terms have the same shape dependence:
® For ki=k;=ks3, (fnLterm)~X and (gnL term)~X
® fnL? (TNL) is more sharply peaked at the squeezed:

® (fn2term)~o3
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Key Question

® Are gnL or TNL terms important?

62



Bispectrum components [Mpc/h]® Bispectrum components [Mpc/h]°

Bispectrum components [Mpc/h]°

10*

- _Squeezed triangle (k =k =100k ) -

- 2 —
o 1 _
fu=40, 9, =107, b,/b,=0.5
0.01 0.10
k, [h/Mpc]

- Folded triangle (k =2k =2k, =

B k k

1 .\. . . . . .

0.10
k, [h/Mpc]

- Equilateral tr;iohglle. .(l.<1ll=k2=k.3>

Bispectrum components [Mpc/h]® Bispectrum components [Mpc/h]°

Bispectrum components [Mpc/h]°

1014

10"?

1016

1014

2 3

- Elongoted tnongkle (k,=k +k, k =3k,)

oS~ ]
\.\ ~
.\. 3
a1 P . . .\‘
0.01 0.10
k. [h/Mpc]
- Isosceles triangle (3k =4k =4k,) =
i k k3 __
=i %, _-
.\,\ ~\'~\.\ i
~ , <
\.\. ~ = —
~, ~
\. ~ <o
R RS S
0.10
k. [h/Mpc]
- Squeezed triangle with R=(1,2,5,10) .
~ R [Mpc/h] M [Mo] ]
1 4x10" |
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Bispectrum components [Mpc/h]°

10" Squeezed triangle (k =k =100k,)
10 I/k2 — k‘ 3 NL fgl.2
......... h
T — — - e gN
=~ L gNhL
107 —=.. : T - R | tot
Tl T~ NL fNL
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Summary

¢ Non-Gaussianity is a new, powerful probe of
physics of the early universe

® [t has a best chance of ruling out all of the single-field
inflation models at once.

® fnL ~ 20 at the moment, wait for WMAP 9-year (201 |) and
Planck (=2012) for more G’s (if it’s there!)

® Jo convince ourselves of detection, we need to see the
acoustic oscillations, and the same signal in the bispectrum

and trispectrum, of both CMB and the large-scale structure

of the universe. o



Now, let’s pray:

® May Planck succeed!
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Now, let’s pray:

® May the signal be there!



