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Three Interesting lopics

® Inflation & Bouncing Cosmology
® Mukhanov; Linde; Steinhardt; Khoury; McAllister

® Blackhole and Cosmological Singularity Problem
® Horowitz; lurok; Damour; Nicolai; Blau; Trivedi;Verlinde

® Horava-Lifshitz gravity
® Kiritsis

e Other topics: Dvali; Binetruy; de Boer; Kallosh; Sethi;
Quevedo; Ross .



Horava-Lifshitz Gravity

® Oh boy, is this hot...

® Horava wrote three papers on his new, potentially

renormalizable and UV complete, theory of gravity, over
the last 5 months (0812.4287;0901.3775;0902.3657).

® MANY papers have been written about this new
theory.



Why Interesting!?

® VVho is not excited about a new idea about quantum
gravity that could be renormalizable and could
potentially be UV complete!

® For me, several results on cosmological implications are
pretty interesting, too.



To mention a few...

Solution to the horizon problem without inflation,
Kiritsis & Kofinas (0904.1334)

Scale-invariant spectrum without inflation, Mukohyama
(0904.2190)

Circular polarization of primordial gravitational waves,
Takahashi & Soda (0904.0554)

Non-singular bounce, Brandenberger (0904.2835);
Calcaguni (0904.0829)
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Basic ldea

® Seeking a “small” theory of quantum gravity in 3+
dimensions, decoupled from strings.

® The basic idea comes from the condensed matter
physics, in the theory of “quantum critical phenomena.”



Most Important Ingredient

® |orenz invariance dictates that space and time scale in
the same way:

® t = bt;x = bx

® |n condensed matter physics, anisotropic scaling is also
common:

® t = b%*t; X = bx

® Horava formulates a theory of quantum gravity by
having an anisotropic scaling with z=3 in UV.

® 7 "flows” from z=3 to z=I as we go from UV to IR. assumption
38
® |orenz invariance is an emerging, accidental symmetry.



Scaling Dimensions

(x| = —1, (1] = —2z [c] = z-|

® z=| for GR;the speed of light is no longer
dimensionless for z# | (so that [ct]=[x]=—1I).

ds? = —N?c?dt? + g;(dx'+Nidt)(dxi+Nidt)

1giil =0, N |=z—1, IN| = 0.



WHY £=3!?

® The culprit of non-renormalizability of gravity is
Newton’s constant, which has the dimension of [mass]

® With z=3, the gravitational coupling
constant becomes dimensionless!

® ‘“‘Power-count renormalizable”
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Kinetic Term of Gravity

2

K2

SK — fdthX\@N(Kl]Kl] — /\Kz)

® ADM formalism is quite natural, as time and space do
not scale in the same way anymore.

|
Kij = N (&;j = ViN; — V,N,) K] =2z
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Kinetic Term of Gravity

2

KZ

SK_

fdthX\@N(KUKU — )le)
[didPx] = —D — 2z, [KY] =2z

Since the action is dimensionless, we find
[k?*] = (z-D)/2

For 3+ 1 gravity (D=3),z=3 is required to

. . . 12
make the coupling dimensionless.



Another Coupling Constant

2

K2

SK_

f dtdx.JgN(K;; K" —(AK?)

*A is dimensionless, and must be equal
to | in IR to recover GR.

A should run, but beta function has not
been computed yet: we don’t even know

whether A=1 is a fixed point.
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“Potential’”’ Terms

® Now, consider the terms other than the kinetic term.

® (Call these “potential” terms, and write down all terms

(allowed by symmetry) with the dimension up to or
equal to the dimension of the kinetic term, i.e.,

[K2]=22=6 for z=3.
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UV Terms

® |n the UV limit, the most important terms have the
dimension of 6. Examples include:

ViR;;V*RY, VR, V'R, RAR,  RYAR;
R,  RIR)RY,  RR;R"
There are MANY such terms!

To make calculations practical,
Horava imposes an additional constraint... 15



“Detailed Balance”

2

SV — l; jdthX\/gNEijgijkgEkg
. oW
JEEY = 5([;)“] where WV is some action.
L]

Giixe is the inverse of De Witt metric:
Gkl — %(gikgﬂ + gil gik) — ) gii gt
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In the context of condensed matter, the virtue of the
detailed balance condition 1s 1n the simplification of the
renormalization properties. Systems which satisty the de-
tailed balance condition with some D-dimensional action
W typically exhibit a simpler quantum behavior than a
generic theory in D + 1 dimensions. Their renormalization
can be reduced to the simpler renormalization of the asso-
ciated theory described by W, followed by one additional
step—the renormalization of the relative couplings be-
tween the kinetic and potential terms 1n §. Examples of
this phenomenon include scalar fields [17] or Yang-Mills

gauge theories [9,13]. Horava, 0901.3775




An Example (that doesn’t work)

|
W=— dex\@(R — 2Ay).
Kw
® and obtains:
Sy = < fdthx\/gN(Rl’f — lel’f + A gif')
Y 8Ky 2 v

|
X gl’jk{’(RM ~ §R8k€ T Awgk{/)-

These terms have the dimensions <=4, 18



So, Horava uses:

® “Cotton Tensor”
ij — ikt J _1ps)
® Symmetric, traceless, transverse, and conformal:

For
8ij — exp{ZQ(x)}gU-,

1t transtorms as

C'/ — exp{—5Q(x)}CY,

® A product of the Cotton tensor has dimension=6.
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Cotton Tensor From Action

® For the Cotton tensor to be compatible with the
“detailed balance” form, it has to be derivable from an
action. Such an action for the Cotton tensor exists:

Lastly, the Cotton tensor follows from a variational
principle, with action

| ..

we Js
Here w? is a dimensionless coupling, and
w3(1") = Tr(l" Adl" + %l AL'AT)
= e (" 0,1,, + 3116, I ) dPx (37)

. L . 20
1S the gravitational Chern-Simons term



The Full Action (in UV)

2w

2 y K2 -
S = fdtdBX\@N{? (Kl-jKl] - /\Kz) — _4CijCl]}

KZ

2
= | dtd’x N{— K’f — AK?) —
[ i xgzvi= ) -

(v Ry VIR — V,R, ViR — —v,.RViR)}.

® Recap: [t]=-3 & [x]=-1; detailed balance (not necessary)
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Adds Lower-dimension
Relevant Terms

® To have the proper IR limit (i.e., GR), we must also add
lower-dimension operators. Horava wants to preserve
the “detailed balance” form, so does it by adding

=L2 fw3(r) Ziz fw3(r) T M/d3X\/§(R — 2Ayw)

W |2%
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The Horava-Lifshitz Action

2 N K2 y
_ R 1] __ 2\ l
S = fdtdgx\/gN{p(Kin] AK*) WCU-C]
KM ik (KW ij
+ 2‘/‘}2 '/ ngv]Rk — Rin]
+ K (1_4/\R2+A R—3A2)}
3(1 — 30\ 4 v W

® This has to be compatible with GR in the IR limit:
G = 1
= 167TGN

[ d*x\[gN{(K ;K" — K?) + R — 2A}.
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Emergent Parameter: ¢

® By comparing the full action and the IR action in the IR
limit, Horava obtains:

In order to compare these two theories, 1t 1s natural to
express our model 1n relativistic coordinates by rescaling 7,

W = ct, (62)

with the emergent speed of light given by

)
K~ W AW |
= . 63
c = \VT=3m (63) 4




Emergent Parameter: Gn

® By comparing the full action and the IR action in the IR
limit, Horava obtains:

Newton constant 1s given by

K2

327rC

GN:
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Emergent Parameter: /\

® By comparing the full action and the IR action in the IR
limit, Horava obtains:

the effective cosmological constant
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Propagation of Gravitons

® [he action for the transeverse-traceless tensor metric
perturbation is:

1 N P 1= i i
— PP R 73 123
SK 2’)/2 dtd {HI]HI/ 2(1 B 3/\) } + SV ~ f([f([ XH,-./-(() ) H,-j

® The dispersion relation in the UV limit (dominated by
Sv) is A

2:)/_ k23
W =2 (k)
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Solution to the Horizon

Problem!?
4

2 — ¥ (Kk2)3

w n (k°)

® The speed of gravitons goes infinite as k->0.

® TJrivial solution to the horizon problem...
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Scalar Field in H-L Gravity

® Mukohyama (0904.2190) showed that you get a scale-
invariant spectrum for a scalar field fluctuation for free!

® Scalar matter action, up to or equal to the dimension=6

Lo ma sy 1 /. A F ) 2 -
=3 / Ud*3a* N i | (90 = N'9,®)" + 000

L s Ao 2
O = v A Ve A+ A —m”,

The scaling dimension of ®@ has to be zero for z=3!

® is automatically scale invariant,



Generating Super-horizon
Fluctuations

® |n the UV limit,

the action in the UV limit 1is
1

Iy =5 [ dtd*Ta* |(09)* + (67 0,0;)"®
2 (O)F e 070G
® The dispersion relation is given by:
k()’
276 P 2
W X ki, = s << H Freeze-out

30



Generating Super-horizon
Fluctuations

— — << H? Freeze-out

w? oc kY -
a

phy

® 5o, to have “initially sub-horizon fluctuations™ go out of
the horizon later, we need to have

o) (a6H2) > ()

® This can be satisfied by a decelerating universe, a(t)~tP,

with p>1/3 - no need for inflation, p> !
31



Singularity Problem

® Not that | understood them, but some results seemed
very interesting... So, | only mention their results.

® Turok (0905.0709) claimed that they could find one

example where a bounce of 4d universe through
singularity was possible!

® AdS* x S’; They studied 3d CFT dual to AdS* x S/

® |n 5d the particle production (back reaction) at
singularity spoils bounce, but they found one solution
in 4d where the particle production is suppressed by

|/N. "“4d cosmology bounces whereas 5d doesn't!" (Turok



Singularity Problem

¢ Damour and Nicolai gave talks on Ejo, infinite-
dimensional Lie algebra, which “nobody
understands.” (Nicolai)

® Nevertheless, they present some ideas: | | d supergravity
gets replaced by E o/K(Ei0) (where K(E|o) is the
maximally compact subgroup of E|o)

® “de-emergence of space-time”
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D-brane Inflation

e McAllister (0808.281 |) presented a systematic
derivation of the general form of potential possible for
the location of D3 brane in a warped throat (i.e., the
form of potential for inflaton):

® V(p)=Votci@p+crp?3+c3p?+...

34



Vector Inflation

¢ Mukhanoyv presented his “vector inflation” model
(0802.2068), and showed how he killed it (0810.4304).

35



Motivation for
Vector Inflation

® “Can we mimic a minimally-coupled (to Ricci tensor),
massive scalar field, using a vector field?

® Jo do this, one must break conformal invariance, and
couple a vector field to Ricci in a specific way:

1 R 1 1/ . R
S — l _l A/ — S — _F“/ F:u’l/ _ , 2 A IA'U'
’/(z g( T s +2<m +—6) y )

36



Equatlon of Motlon

1 R
' [ | v

In the spatially ﬂa.t. Friedmann universe with the metric
2 ) Y ~ ) ,
ds® = dt* — a*(t)6; da’ dz”,

these equations take the following form:

—LA _1() -1- (772 -1~ f) _1() -1- i() —1 S O AO=O (for aIA=O)

(l“ (l"'

.. 1 R
A, —|— 4 — = AA, —1—(772 + ()) A; — 0, 4(,——0 4()-1-—0 (OLA) =

0 (l“ (l“

B; +3HDB; +m*B; =0 where B; = A i/ a

Exactly same as the massive scale field!



However...

these equations take the following form: Can this happen!?

—iAA() T (m T Jg)) Ap + iC} A; =0, Ao=0 (for 0iA=0)

(l"’

5 S 1 .. R s 1 |
At =4 — =AA+ (m2+ =) A — 0 Ay — =0, A0 + = 0; (O Ar) = 0
a - 6 a a2

(

B; +3HB; + m*B; =0 where B; = A i/ a

Exactly same as the massive scale field!



No, for a single A,

For a homogeneous vector field in a flat Friedmann universe we obtain

Ty = (Bf T "’”'QBE» ),

b | —

I! = [-2(Bj — m’B;) — 2H BBy, — =(H + 3H*)B{]J!

® The off-diagonal term drives anisotropic expansion, and
therefore the scale factor cannot be isotropic.

® This problem can be fixed by having multiple vector
fields. 39



Multi-Vector Model

Let us first consider a triplet of mutually orthogonal vector fields B;* [5], with the same
magnitude |B| each. Then from

Z Bé(a;) B;b) _ | B|2 (58, (7)
it follows that
Z B;:a;) BJ(Q) _ ‘Blz(sz

J
a

® Then the stress-energy tensor becomes...

40



Multi-Vector Model

1) = ¢ =2(B? + m*B?),

] [V

T! = —pd. = —3(B; — m*B})s.,
where B; are the components of any field from the triplet which satisty

BZ + 3H BZ +m?B, = 0.
and H 1s now given by

H? = 47(B? + m*B?).

Isotropic expansion!

41



Another Approach

® |nstead of having orthogonal vector fields, have many
vectors (N vectors) with random orientations:

N .
Y BB ~ a
3

B*¢: + O(1)VN B?

; ]
a=1

T'he energy—momentum tensor 1s

Iy = 5(B; + V(BY).

+ B;B; + H(B;B; + B;B;) + (H + 3H* — V'(B”)) B, B;.

and after averaging over N fields we obtain

) =7 N 52 b 2N\ <1
I, = —po; ~ > (—Bj + V(B7))o;. 42

J



However:

® |n the following publication (0810.4304), he showed
that this model leads to a disaster: gravitons become
tachyons...

—]:Tl';\TBB,

Wl +2 | HA ——————
Uik Tt ( i 3 4+ 47N B>

9
) /?..,-z'.k — Ah"ik = —m., h--zjk.

-

N/

i

U9 t

1 ¢ AT ‘)
o SN 5 — _I.Z'/T*\ BH
~ 16mm~a°N B ——————

e This is negative because N>1/B? to have isotropic
expansion...
e This problem occurs for m?A? potential, but can be

fixed by giving A, a different form of potential.+



Bouncing Cosmology

® Khoury (0811.3633) gave a nice summary of the
power spectrum of bispectrum that one can expect
from a contracting universe (assuming that going through
singularity does not destroy it!)
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Spectrum of density perturbations determined by...

L= P(X,¢)+ V() X = —g"d, 0,4

2

@ Equation of state W
And, equally important, ..

@ Speed of sound Cg



S?hﬂrkjcuﬁd CXJSGE‘&:SZZ 1) ff;gg]yglﬁm Feldman & MuKhanov

= / d>xdTz?

a=(=—7)"

de Sitter expansion dust contraction
(€ = 0) (e = 3/2)

Wands (

q?liﬁﬂﬁ“i&:EWGWJEWbEﬁmM”fﬁﬁﬂ

- )




For general sound speed Garriga & Mukhanov (1999)

d(¢ - :
S 3, 2 ) e
8 '/d rdT2z [(d'r) (VC) ]
i 9
—— S:=3 /d?’a:dT— [(£> — c; (VC)
dr
To put in standard form, define sound horizon fime: dy k- CodE

Je =2 /c13:17dyq2 [(3—2)2 — (ﬁC)Q

av/2e

where @q =




Aqgain In terms of canonically-normalized

Armendariz-Picon & Lim (‘03)

t- ,'.' ;= -\ - . - § \ "'-V- ;'_,- .‘ll
vidgueljo | V)

(Includes Slow—roll inf'n)

For any background, can compensate with €5 =

He,




Gravity Waves Never Lie

Tensor modes evolve according to the acfua
cosmological backgrouna:
(12/2,k il d?a
=g k . =0
dr a dr

- generically far from scale invariant!

E\ DAr ll_Mﬁ .1] ’ ﬂ||| 'L|hl l " ““""l'L “H "l ’ ""l ILﬂ\Il
Ay 26

> np = < 0 7 s >
1 — € € — 1

- Amplitude peaks on large scales | - Amplitude peaks on small scales

-CMB = € < ()3 — Unobservable on CMB scales




Stability and T

. (R
UL (kz , 2) v =0 > 0 1/ Y

av/2e ()] g ar/ e 5

=

V V 1

> | ( == ~ Ol 7PE =% ~ —




A Few Slides From My Talk...



Bispectrum

® Three-point function!

® Br(ki, k> ks)
= <CkICk2Ck3> = (amplitude) x (217)30 (k| +ka+k3)b(ki,ka,k3)

model-dependent function
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(a) squeezed triangle (b) elongated triangle (c) folded triangle

(k =k >>k,) (k, =k +k,) (k, =2k, =2k,)
k
2 k k
 % M 2 k,
k1
k k

(d) isosceles triangle (e) equilateral triangle
(k >k =k ) (k =k =k)




Why Study Bispectrum?

It probes the interactions of fields - new piece of
information that cannot be probed by the power
spectrum

But, above all, it provides us with a critical test of the
simplest models of inflation:“are primordial
fluctuations Gaussian, or non-Gaussian?”

Bispectrum vanishes for Gaussian fluctuations.

Detection of the bispectrum = detection of non-
Gaussian fluctuations o



A Non-linear Correction to
Temperature Anisotropy

® The CMB temperature anisotropy, AT/T, is given by the
curvature perturbation in the matter-dominated era, .

® One large scales (the Sachs-Wolfe limit), AT/T=—®/3.

For the Schwarzschild

® Add a non-linear correction to ®: metric, »=+GM/R.
& DO(x) = Dy(x) + fnr[DPy(x)]? (Komatsu & Spergel 2001)

® fnL was predicted to be small (~0.01) for slow-roll
models (Salopek & Bond |1990; Gangui et al. 1994)
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fnL: Form of Be

® @ is related to the primordial curvature
perturbation, C, as $=(3/5)C.

® T(x) = Cg(x) + (3/5)fn[Ce(X)]?

o Br(ki,kaks3)=(6/5)fn x (217)30 (ki +kat+k3) x
[Pc(ki)Pg(kz) + Pg(ke)Pg(ks) + Pg(ks)Pr(ki)]

56



fnL: Shape of Triangle

® For a scale-invariant spectrum, P¢(k)=A/k?,

® Br(ki,kyk3)=(6A%5)fnL x (2TT)30(k+katks3)
x [1/(kik2)® + 1/(kak3)3 + 1/(kski)?]

® [et’s order ki such that ks3<k,<k;. For a given ki,
one finds the largest bispectrum when the
smallest k, i.e., k3, is very small.

® Br(ki,kaks3) peaks when k3 << ky~k|

® Therefore, the shape of faL bispectrum is the

squeezed triangle! K,
—_ k

(Babich et al. 2004) R ’ 57

1




Bc in the Squeezed Limit

® |n the squeezed limit, the fnL bispectrum becomes:
Br(ki,ka,ks3) = (12/5)fne x (217)30(k 1 +ka+k3) x Pe(ki)Pe(ks)
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Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

® For ANY single-field models®, the bispectrum in the
squeezed limit is given by

® Br(kikzk3) = (1-ns) x (217)30(ki+Kk2+k3) x Prc(ki)Pr(ks)

® Therefore, all single-field models predict fne=(5/12)(1—ns).

® With the current limit ns=0.96, fnL is predicted to be 0.017.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 59



Understanding the heorem

® First, the squeezed triangle correlates one very long-
wavelength mode, k. (=k3), to two shorter wavelength

modes, ks (=k|=k2):

® <CkiCioli3> = <(Cks)*Cuk>

® Then, the question is:“why should (Cks)? ever care
about Ty ?”

® The theorem says, “it doesn’t care, if Ck is exactly

scale invariant.’
00



CkL rescales coordinates

Separated by more than H-!

® The long-wavelength
curvature perturbation
rescales the spatial
coordinates (or changes the
expansion factor) within a
given Hubble patch:
® ds2=—dt2+[a(t)]2e?5(dx)?

CkL
left the horizon already\ 0




CkL rescales coordinates

Separated by more than H-!

® Now, let’s put small-scale
perturbations in.

e Q.How would the
conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation?

CkL
left the horizon already\ 62




7;kL rescales coordinates

Separated by more than H-!

e Q.How would the

conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation!?

® A.No change, if Ck is scale-
invariant. In this case, no
correlation between Ty and
(Cks)? would arise.

sz
left the horizon alreacly\ 63




Creminelli & Zaldarriaga (2004); Cheung et al. (2008)
Real-space Proof

® The 2-point correlation function of short-wavelength
modes, E=<Ts(X)Ts(y)>, within a given Hubble patch
can be written in terms of its vacuum expectation value
(in the absence of C1), &, as:

® &= &o(|x-yl|) + CL[d&o(|x~y]|)/dTL]
® &u = &o(|x—y|) + T [dEo(|x—y|)/dIn|x-y]]
® &= &o(|x=yl|) + T (I-ns)&o(|x=y])

3-pt func. = <(Cs)?CL> = <&u.C>
= (1-ns)&o(|x-y[)<TL>>




Where was “Single-field™!

® Where did we assume “single-field” in the proof?

® For this proof to work, it is crucial that there is only

one dynamical degree of freedom, i.e., it is only T, that
modifies the amplitude of short-wavelength modes, and

nothing else modifies it.

® Also, C must be constant outside of the horizon
(otherwise anything can happen afterwards). This is also
the case for single-field inflation models.
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Therefore...

® A convincing detection of fnL > | would rule out all of
the single-field inflation models, regardless of:

® the form of potential
® the form of kinetic term (or sound speed)
® the initial vacuum state

® A convincing detection of fnL would be a breakthrough.
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Large Non-Gaussianity
from Single-field Inflation

® S=(1/2)fd* v~g [R~(0u®P)-2V(¢p)]
® )nd-order (which gives Pt)
o S=[d & [a*(3:0) ()]
® 3rd-order (which gives Br)
® S3=[d' €2 [...a%(0:0)*C+...a(0iC)*C +...a%(0:C)*] + O(&?)

Cubic-order interactions are suppressed by an additional factor of €.
(Maldacena 2003) 67



Large Non-Gaussianity
from Single-field Inflation

o S=(1/2)fd** v—g {R-2P[(0,)1LP]} [general kinetic term]

® nd-order

“Speed of sound”
® $=[dx € [a*(0:L) e’ ~a(0T)']  22p /(Py+2XPro)

® 3rd-order
o S3=[d*x €2 [...a%(0:C)*T/cs? +...a(0iC)*C +...a*(0:C)3/cs?] +
O(&?)

Some interactions are enhanced for c¢;2<l.
(Seery & Lidsey 2005; Chen et al. 2007) e



Large Non-Gaussianity
from Single-field Inflation

® S=(1/2)[d*x v/—g {R-2P[(Ou®)%,p]} [seneral kinetic term]
® 2nd-order

® 5=[d* € [a°(0:C)*/cs™—a(0iC)]

® 3rd-order /\

® S3=[d% €?[...a%*(0:C)*T/cs> +..k.1c1(8i'€)2'§ +...a%(0:C)3/cs?] +
O(&%)

“Speed of sound”
cs?=P,x/(Px+2XP,xx)

Some interactions are enhanced for c¢;2<l. /\
(Seery & Lidsey 2005; Chen et al. 2007) 69




Another Motivation For fni

Separated by more than H-!

In multi-field inflation

models, Tk can evolve
outside the horizon.

This evolution can give rise
to non-Gaussianity;
however, causality demands
that the form of non-
Gaussianity must be local!

X|
C(x)=TCg(x)+(3/5)NL[Ce() ]+ AXe(X) +B[Xs(X)]*+. ..
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Back to Khoury’s Talk
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