IPMU International Conference

Dark Energy: Lighting up the Darkness

<u>http://member.ipmu.jp/darkenergy09/welcome.html</u>

June 22 – 26, 2009

At Institute for the Physics and Mathematics of the Universe (IPMU), Kashiwa, Chiba, Japan

The SZ effect as a probe of violent cluster mergers

Eiichiro Komatsu (Texas Cosmology Center, UT Aus SZ Workshop, Perimeter Institute, April 29, 2009

New University Research Unit **Texas Cosmology Center**

Astronomy/Observatory **Volker Bromm** Karl Gebhardt Gary Hill Eiichiro Komatsu Milos Milosavljevic Mike Montgomery Paul Shapiro Don Winget

Physics Duane Dicus Jacques Distler Willy Fischler Vadim Kaplunovsky **Richard Matzner** Sonia Paban **Steven Weinberg** [new junior faculty] ³

Purpose of This Talk

 Show (hopefully, give an observational proof) that high-spatial resolution (~10") SZ mapping observations are a powerful probe of violent cluster mergers.

Collaborators (1998–2008)

- Makoto Hattori (Tohoku Univ.)
- Ryohei Kawabe (NAOJ)
- Tetsu Kitayama (Toho Univ.)
- Kotaro Kohno (Univ. of Tokyo)
- Nario Kuno (Nobeyama Radio Observatory)
- Hiroshi Matsuo (NAOJ)

- Koichi Murase (Saitama Univ.)
- Tai Oshima (Nobeyama Radio Observatory)
- Naomi Ota (Tokyo Univ. of Science)
 - Sabine Schindler (Univ. of Innsbruck)
- Yasushi Suto (Univ. of Tokyo)
 - Kohji Yoshikawa (Univ. of Tsukuba)

Papers

- Komatsu et al., ApJL, 516, L1 (1999) [SCUBA@350GHz]
- Komatsu et al., PASJ, 53, 57 (2001) [NOBA@150GHz]
- Kitayama et al., PASJ, 56, 17 (2004) [Analysis w/ Chandra]
- Ota et al., A&A, 491, 363 (2008) [Suzaku]

Target: Bright, Massive, and Compact

- RXJI347–I145
- z=0.451 (10"=59 kpc)
- $L_{X,bol}$ ~2x10⁴⁶ erg/s
- $M_{tot}(<2Mpc)~|x|0|^5M_{sun}$
- Cluster Mean T_X~I3keV
- $\theta_{core} \sim 8 \operatorname{arcsec} (47 \text{ kpc})$
- y~8x10⁻⁴

7

High Spatial Resolution SZ Mapping Observations • SCUBA/JCMT@350GHz

- **I5 arcsec** FWHM Beam
- Observed in 1998&1999
- 5.3 mJy/beam (8 hours)

• NOBA/Nobeyama 45m@150GHz

- **13 arcsec** FWHM Beam
- Observed in 1999&2000
- I.6 mJy/beam (24 hours)

Nobeyama Bolometer Array

- NOBA = 7-element
 bolometer array
 working at λ=2mm
- Made by Nario Kuno (NRO) and Hiroshi Matsuo (NAOJ) in 1993.
- Still available for general users at NRO

9

X-ray Observations

- **ROSAT**, HRI (Schindler et al. 1997)
 - Sensitive up to ~2 keV
 - 35.6 ks (HRI)
- Chandra, ACIS-S3 (Allen et al. 2002), ACIS-I (archived)
 - Sensitive up to ~7 keV
 - 18.9 ks (ACIS-S3), 56 ks (ACIS-I)
- Suzaku, XIS and HXD (Ota et al. 2008)
 - Sensitive up to ~I2 keV (XIS); ~60 keV (HXD/PIN)
 - 149 ks (XIS), 122 ks (HXD)

Significant offset between the SZ peak and the cluster center.

Komatsu et al. (2001)

• ROSAT data indicated that this cluster was a relaxed, regular cluster. The SZ data was not consistent with that.¹²

- Allen et al. (2002) estimated ~18 keV toward this direction from Chandra spectroscopy.
- But, Chandra is sensitive only up to ~7keV...

X-ray + SZ Joint

- The SZ effect is sensitive to arbitrarily high temperature.
- X-ray spectroscopy is not.
- Combine the X-ray brightness and the SZ brightness to derive the electron temperature:
 - I_{SZ} is proportional to $n_e T_e L$, I_X is proportional to $n_e^2 \Lambda(T_e)L$ -> Solve for T_e (and L)

Kitayama et al. (2004)

Komatsu et al. (1999, 2001); Kitayama et al. (2004) Images of the SZ data

 Spatially resolved SZ images in 350 GHz (increment) and I50 GHz (decrement)

Relativistic Correction

0.2

0.1

0

-0.1

- At such a high T_e that we are going to deal with (~30 keV), the relativistic correction must be taken into account.
- The suppression of the signal due to the relativistic correction diminishes the SZ at 350GHz more than that at 150GHz.

"SE" (South-East) Quadrant 44:30 NW NE -11:45:00 Declination excluded 30 SW SE 46:00 32 34 28 31 13:47:30 **Right ascension**

• We exclude the central that is contaminated by the ~4mJy point source, and treat the SE quadrant separately from the rest of the cluster (which we shall call the "ambient component").

17

Komatsu et al. (1999, 2001); Kitayama et al. (2004) SZ Radial Profiles

The excess SZ in the South-East quadrant is clearly seen.¹⁸

Allen et al. (2002); Kitayama et al. (2004) X-ray Radial Profile

Kitayama et al. (2004) Temperature Deprojection (Ambient Component) 40

- SE quadrant is excluded.
- Black: the temperature profile measured from the Chandra X-ray spectroscopy.
- Red: the temperature profile measured from the spatially resolved SZ data + X-ray imaging, without spectroscopy.

What is this good for?

- Spatially-resolved SZ + X-ray surface brightness observations give you the temperature profile, without spatially-resolved spectroscopic observations.
- A powerful way of determining the temperature profiles from high-z clusters, where you may not get enough X-ray photons to do the spatially-resolved spectroscopy!
- Why need temperature profiles? For determining accurate hydrostatic masses.

Kitayama et al. (2004) Excess Component: Derived Parameters

- With the SZ data (150&350GHz) and the Chandra X-ray data
- $kT_{excess} = 28.5 \pm 7.3 \text{ keV}$
- $n_{excess} = (1.49 \pm 0.59) \times 10^{-2} \text{ cm}^{-3}$
- L_{excess}=240±183 kpc
- $y_{\text{excess}} \sim 4 \times 10^{-4}$
- $M_{gas} \sim 2 \times 10^{12} M_{sun}$

Kitayama et al. (2004) **RX|1347-1145 is a Bullet.**

- A calculation of the shock (Rankine-Hugoniot condition) with:
 - pre-shock temp= kT_1 =12.7keV; post-shock= kT_2 =28.5keV
 - pre-shock density= ρ_1 =free; post-shock= ρ_2 =0.015 cm⁻³
 - gamma=5/3
 - $\frac{\mathsf{T}_{1}\rho_{1}}{\mathsf{T}_{2}\rho_{2}} = \frac{p_{1}}{p_{2}} = \frac{(\gamma+1) (\gamma+1)\rho_{2}}{(\gamma+1)\rho_{2}\rho_{1}}$
 - Solution: $\rho_1 \sim 1/2.4$ of the post-shock density

$$\frac{(\gamma-1)\frac{\rho_2}{\rho_1}}{-(\gamma-1)}$$

Kitayama et al. (2004) **RX[1347-1145 is a Bullet.**

- The Mach number of the pre-shock gas ~ 2 , and the velocities of the pre-shock and post-shock gas are 3900 km/s & 1600 km/s.
 - For a head-on collision of equal mass, the collosion velocity is 4600 km/s!
- This guy is a bullet^{*} just viewed from a "wrong" viewing angle. *Bullet Cluster has 4700km/s (Randall et al. 2008)

24

A Big Question

Do you believe these results?

- This is the only dataset for which the spatiallyresolved, high-resolution SZ data were available, and used to extract the cluster physics.
- Can we get the same results using the X-ray data alone?
 - For Chandra, the answer is no: not enough sensitivity at >7keV.
 - Suzaku can do this.

A Punch Line

- With Suzaku's improved sensitivity at ~10 keV, we could determine the temperature of the excess component using the X-ray data only.
- And, the results are in an excellent agreement with the SZ+Chandra analysis.
- Ota et al., A&A, 491, 363 (2008)

Suzaku Telescope

- Japan-US X-ray satellite, formally known as ASTRO-E2
- X-ray Imaging Spectrometer (XIS)
 - X-ray CCD cameras; FOV=18'x18'; Beam=2'
 - Three with 0.4–12keV; one with 0.2–12keV
 - Energy resolution~160eV at 6keV
- Hard X-ray Detector (HXD)
 - One with 10–60keV; another with 40–600keV
 - FOV=30'x30' for 10–60keV, no imaging capability

XIS Image of RXJ1347–1145

XIS Spectra

- Single-temperature fit yields kT_e=12.86^{+0.08}-0.25 keV
- But, it fails to fit the Fe line ratios χ^2 =1320/1198
 - The single-temperature model is rejected at 99.3% CL ²⁹

H-like: rest frame 6.9 keV He-like: rest frame 6.7 keV (b)He–like Fe K α H–like Fe Kα + XISO4.5 5.5 5 Energy [keV]

Temperature From Line Ratio

• $kT_e = 10.4^{+1.0}_{-1.3}$ keV - significantly cooler than the single-temperature fit, $12.86^{+0.08}_{-0.25}$ keV.

30

More Detailed Modeling

- We tried the next-simplest model: two-temperature model, but it did not work very well either.
- We know why: RXJ1347-1145 is more complicated than the two-component model.
 - The second component is localized, rather than distributed over the entire cluster.
- A joint Chandra/Suzaku analysis allows us to take advantage of the Chandra's spatial resolution and Suzaku's spectroscopic sensitivity.

"Subtract Chandra from Suzaku"

- To make a long story short:
 - We use the Chandra data outside of the excess region (SE region) to get the model for the ambient gas.
 - 6 components fit to 6 radial bins from 0" to 300".
 - Then, subtract this ambient model from the Suzaku data.
 - Finally, fit the thermal plasma model to the residual.
 - And...

HXD data are consistent with the thermal model; we did not find evidence for non-thermal emission.

33 • $kT_{excess} = 28.5 \pm 7.3 \text{ keV}, n_{excess} = (1.49 \pm 0.59) \times 10^{-2} \text{ cm}^{-3}$

Proof of Principle

- So, finally, we have a proof (and I can sleep better at night):
 - Yes, the high-spatial resolution SZ mapping combined with the X-ray surface brightness indeed gives the correct result.
- And, we have found a candidate for the hottest gas clump known so far!

Lessons & Summary

- X-ray data may not capture (or measure) the temperature of very hot (>20 keV) components, if their band is limited to <10 keV.
- SZ is sensitive to arbitrarily high temperatures, which makes it an ideal probe of violent cluster mergers.
- As an added bonus, it should allow us to determine temperature profiles, hence masses, of clusters in a high-redshift universe, where X-ray spectroscopic observations are difficult.