$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi F \widetilde{F}\right)
$$

In search of new physics for the Universe
The lecture slides are available at
https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html

Eiichiro Komatsu (Max Planck Institute for Astrophysics) Nagoya University, June 6-30, 2023

Topics

From the syllabus

1. What is parity symmetry?
2. Chern-Simons interaction
3. Parity violation 1 : Cosmic inflation

$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi F \widetilde{F}\right)
$$

4. Parity violation 2: Dark matter
5. Parity violation 3: Dark energy
6. Light propagation: birefringence
7. Physics of polarization of the cosmic microwave background
8. Recent observational results, their implications, and future prospects

4.1 Scalar Field Dark Matter

What is dark matter?

No one knows!

- There can be different types of dark matter (just like in the visible sector).
- Dark matter can be elementary particles or composite particles (like a pion).
- Dark matter can be fermions or bosons with arbitrary spins.
- Dark matter may or may not be coupled to Standard Model particles.
- ...
- Dark matter may or may not violate parity symmetry.

Scalar field dark matter coupled to the CS term

$$
I=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2}(\partial \chi)^{2}-V(\chi)-\frac{1}{4} F^{2}-\frac{\alpha}{4 f} \chi F \tilde{F}\right]
$$

- x is a neutral pseudoscalar field (spin 0).
- Why consider X as a good dark matter candidate?
- Why not? We have an example in the Standard Model: a neutral pion.
- We expect $\alpha \simeq \alpha_{\mathrm{EM}} \simeq 10^{-2}$ and $f<M_{\mathrm{PI}} \simeq 2.4 \times 10^{18} \mathrm{GeV}$.
- x can be composed of fermions like a pion, or a fundamental pseudoscalar like an "axion" field.

Cold Dark Matter (CDM)

Is X pressureless?

- Current observations suggest that dark matter is "cold" (low velocity), which implies that it is practically pressureless, $P \approx 0$.
- P is given by the velocity dispersion of particles, $P / \rho=\left\langle v^{2}\right\rangle / 3 \ll 1$, where ρ is the mass energy density with $c=1$.
- What is P / ρ of x ? It depends on the potential, $V(x)$!

Equation of motion in non-expanding space

$c=1$

$$
\square \chi-\frac{\partial V}{\partial \chi}=-\ddot{\chi}+\nabla^{2} \chi-\frac{\partial V}{\partial \chi}=-\frac{\alpha}{f} \mathbf{E} \cdot \mathbf{B}
$$

- The right hand side is the second-order fluctuation (Day 4).
- E and \mathbf{B} cannot have a uniform background, if we impose spatial isotropy (no preferred direction in space).
- The uniform distribution of dark matter is described by the average value of x. We decompose

$$
\chi(t, \mathbf{x})=\bar{\chi}(t)+\delta \chi(t, \mathbf{x})
$$

Equation of motion in non-expanding space

For the homogeneous mode

$$
\square \chi-\frac{\partial V}{\partial \chi} \Rightarrow-\ddot{\chi}+\nabla^{2} \chi-\frac{\partial V}{\partial \bar{\chi}}=-\frac{\alpha}{f} \mathbf{E} \boldsymbol{B}
$$

- The energy density and pressure of a homogeneous scalar field are

$$
P=\frac{1}{2}\left\langle\dot{\bar{\chi}}^{2}\right\rangle-\langle V(\bar{\chi})\rangle \quad \text { where }\langle(\ldots)\rangle=\frac{1}{T} \int_{0}^{T} d t(\ldots)
$$

is the average over time. T is some characteristic timescale for χ,

Pressure of a massive free scalar field

$V(x)=m^{2} x^{2 / 2}(c=1$ and $\hbar=1)$

- To simplify notation, we will omit the overline, $\bar{\chi}(t)->\chi(t)$.
- The equation of motion for a massive free scalar field is $\ddot{\chi}+m^{2} \chi=0$
- The solution with $\chi(0)=\chi_{0}$ and $\dot{\chi}(0)=0$ is

$\chi(t)=\chi_{0} \cos (m t)$ Oscillations with the period $T=2 \pi / m$.

$$
\rho=\frac{1}{2} m^{2} \chi_{0}^{2}, \quad \underset{\text { Pressureless }}{P}=0
$$

Obata, Fujita, Michimura (2018); Fedderke, Graham, Rajendran (2019) CDM-induced parity violation in EM waves
"Time-domain cosmology"

- The Chern-Simons interaction between photons and CDM gives

$$
\begin{aligned}
& \ddot{A}_{ \pm}+\left(k^{2} \mp \frac{k \alpha \dot{\chi}}{f}\right) A_{ \pm}=0
\end{aligned}
$$

> This is a human timescale!!

Problem Set 5

P / ρ for a power-law potential

- In non-expanding space, show that

Hint:

$$
\dot{\chi}^{2}=(\chi \dot{\chi})^{\cdot}-\chi \ddot{\chi}
$$

$\left\langle\dot{\chi}^{2}\right\rangle=\langle\chi \partial V / \partial \chi\rangle=2 n\langle V\rangle$
for a power-law potential, $V(\chi) \propto \chi^{2 n}$.
. Show that $\frac{P}{\rho}=\frac{n-1}{n+1}=\{$
$0 \quad \chi^{2}$
$\begin{array}{lll}1 / 3 & \text { for } & \chi^{4} \\ 1 / 2 & & \chi^{6}\end{array}$

4.2 Evolution of X in Expanding Space

Equation of motion in expanding space

With the physical time t, instead of the conformal time τ

$$
\square \chi-\frac{\partial V}{\partial \chi}=-\ddot{\chi}-3 H \dot{\chi}-m^{2} \chi=0 \begin{aligned}
& \square=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu}\right) \\
& =-\frac{\partial^{2}}{\partial t^{2}}-3 \frac{\dot{a}}{a} \frac{\partial}{\partial t}+\frac{1}{a^{2}} \nabla^{2}
\end{aligned}
$$

- During the matter-dominated era, $a(t) \propto t^{2 / 3}$ and $H(t)=2 /(3 t) . \quad \sqrt{-g}=a^{3}$
- The solution with $\chi(0)=\chi_{0}$ and $\dot{\chi}(0)=0$ is

$$
\chi(t)=\chi_{0} \frac{\sin (m t)}{m t} \quad\left(\stackrel{\text { Non-expanding case }}{\longleftrightarrow} \chi(t)=\chi_{0} \cos (m t)\right)
$$

Evolution of X in expanding space

 $m<H$ or $m>H$?$$
\chi(t)=\chi_{0} \frac{\sin (m t)}{m t}
$$

- For $m t \ll 1$ (or $m \ll H), \chi(t) \simeq \chi_{0}$.
- The energy density is a constant.
- For $m t \gg 1$ (or $m \gg H$), $\chi(t) \propto t^{-1} \propto a^{-3 / 2}$.
- The energy density dilutes away as
$\rho \propto a^{-3}$, in agreement with pressureless matter.

Evolution of P / ρ in expanding space

 $m<H$ or $m>H$?- If we do not average over time,

$$
\frac{\dot{\chi}^{2}-m^{2} \chi^{2}}{\dot{\chi}^{2}+m^{2} \chi^{2}}
$$

oscillates rapidly around 0 for $m>H$.

- The ratio is -1 for $m<H$.
- This means $P=-\rho$. Dark energy!

Scale Factor a / a_{i}

Topics

From the syllabus

1. What is parity symmetry?
2. Chern-Simons interaction
3. Parity violation 1 : Cosmic inflation

$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi \tilde{F} \tilde{F}\right)
$$

4. Parity violation 2: Dark matter

5. Parity violation 3: Dark energy

6. Light propagation: birefringence
7. Physics of polarization of the cosmic microwave background
8. Recent observational results, their implications, and future prospects

5.1 Scalar Field Dark Energy

What is dark energy (DE)?

No one knows!

- We really have no idea.
- Most people assume, for practical purposes, that dark energy is Einstein's cosmological constant (Λ). However, recent advances in quantum gravity research suggest that Λ is an unlikely explanation...
- My approach: Only experiments will tell us the answer!
- Searching for parity violation might help?

Equation of state parameter of DE

Astronomers have been measuring this parameter for 25 years.

$$
w=\frac{P_{\mathrm{DE}}}{\rho_{\mathrm{DE}}}=-0.978_{-0.031}^{+0.024} \quad \text { (68\% CL; Brout et al. 2022) }
$$

- If $D E$ is a scalar field,

$$
w=\frac{\frac{1}{2}\left\langle\dot{\chi}^{2}\right\rangle-\langle V(\chi)\rangle}{\frac{1}{2}\left\langle\dot{\chi}^{2}\right\rangle+\langle V(\chi)\rangle}
$$

- Therefore, current observations require that $\dot{\chi}^{2} \ll V(\chi)$.

Scalar field dark energy

A ridiculously small "mass"

- The (effective) mass of a scalar field DE must be smaller than the current expansion rate of the Universe (the Hubble constant).
- $m<H_{0} \simeq 10^{-33} \mathrm{eV}$
- A ridiculously small "mass"!
- This simply means that the scalar field potential must be nearly flat, and that the scalar field is still slowly rolling down the potential today.

$$
-10^{-30.3} \mathrm{eV}-10^{-32.3} \mathrm{eV}
$$

DE-induced parity violation in EM waves

- The Chern-Simons interaction between photons and DE gives

$$
A_{ \pm}^{\prime \prime}+\left(k^{2} \mp \frac{k \alpha \chi^{\prime}}{f}\right) A_{ \pm}=0
$$

- The slow-roll of X implies

DE-induced parity violation in EM waves

- The Chern-Simons interaction between photons and DE gives

$$
\begin{aligned}
& \left.A_{ \pm}^{\prime \prime}+\left(k^{2} \pm \frac{k \alpha a}{3 H f} \frac{\partial V}{\partial \chi}\right)\right)_{\text {It is the slope of the potential }} A_{ \pm}=0 \\
& \text { rather than the mass (second derivative), } \\
& \text { that determines the magnitude of } \\
& \text { - The slow-roll of } X \text { implies }
\end{aligned}
$$

Topics

From the syllabus

1. What is parity symmetry?
2. Chern-Simons interaction
3. Parity violation 1 : Cosmic inflation
4. Parity violation 2: Dark matter
5. Parity violation 3: Dark energy
6. Light propagation: birefringence
7. Physics of polarization of the cosmic microwave background
8. Recent observational results, their implications, and future prospects

6.1 Polarization of Light

Phase velocity of circular polarization states

$c=1$

- We write

$$
A_{ \pm}^{\prime \prime}+\omega_{ \pm}^{2} A_{ \pm}=0, \quad \omega_{ \pm}^{2}=k^{2} \mp \frac{k \alpha \chi^{\prime}}{f}
$$

- In contrast to inflation, where $\omega_{ \pm}^{2}$ can become negative (Day 3), we will work in the limit of $k^{2} \gg k \alpha \chi^{\prime} / f$. This approximation is accurate for the photons we observe today.
- The phase velocity of circular polarization states, $\omega_{ \pm} / k$, is

$$
\frac{\omega_{ \pm}}{k} \simeq 1 \mp \frac{\alpha \chi^{\prime}}{2 k f}
$$

+: Right-handed state
-: Left-handed state

Plane-wave Solution

$c=1$

$$
A_{ \pm}^{\prime \prime}+\omega_{ \pm}^{2} A_{ \pm}=0, \quad \omega_{ \pm} \simeq k \mp \frac{\alpha \chi^{\prime}}{2 f}
$$

- For $\left|\omega_{ \pm}^{\prime}\right| \ll \omega_{ \pm}^{2}$, which is satisfied here, an accurate solution is given by

$$
A_{ \pm} \simeq C_{ \pm} \frac{\exp \left(-i \int d \tau \omega_{ \pm}+i \delta_{ \pm}\right)}{\sqrt{2 \omega_{ \pm}} \simeq \sqrt{2 k}} \begin{aligned}
& \text { We can replace } \omega_{ \pm} \\
& \text {in amplitude (but not } \\
& \text { in phase) with } k .
\end{aligned}
$$

where $C_{ \pm}$is the initial amplitude and $\delta_{ \pm}$is the initial phase.

Electric Field

In the circular polarization basis

The arrows show directions of the electric field vector \mathbf{E}.

- As $\mathbf{E}=-a^{-2} \mathbf{A}^{\prime}$,

$E_{ \pm} \simeq i \sqrt{\frac{k}{2}} \frac{C_{ \pm}}{a^{2}(\tau)} \exp \left(-i \int d \tau \omega_{ \pm}+i \delta_{ \pm}\right)$

where $a\left(\tau_{\mathrm{ini}}\right)=1$ at the initial conformal time, τ_{ini}.
- The circular polarization is given by $V=\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2} \propto\left|C_{+}\right|^{2}-\left|C_{-}\right|^{2}$. Therefore, the Chern-Simons term with $\left|\omega_{ \pm}^{\prime}\right| \ll \omega_{ \pm}^{2}$ does not create new circular polarization, if there was no circular polarization to begin with.

Electric Field

In the circular polarization basis

The arrows show directions of the electric field vector \mathbf{E}.

- As $\mathbf{E}=-a^{-2} \mathbf{A}^{\prime}$,
$E_{ \pm} \simeq i \sqrt{\frac{k}{2}} \frac{C_{ \pm}}{a^{2}(\tau)}$
We will assume $\left|C_{+}\right|^{2}-\left|C_{-}\right|^{2}=0$, hence no circular polarization. But, it can be linearly polarized.
where $a\left(\tau_{\mathrm{ini}}\right)=1$ at the initial conformal time, τ_{ini}.

- The circular polarization is given by $V=\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2} \propto\left|C_{+}\right|^{2}-\left|C_{-}\right|^{2}$. Therefore, the Chern-Simons term with $\left|\omega_{ \pm}^{\prime}\right| \ll \omega_{ \pm}^{2}$ does not create new circular polarization, if there was no circular polarization to begin with.

Linear Polarization: Stokes Parameters

Q and U

- In the right-handed coordinate system, the light is coming towards us in the z-direction.
- Each thick black line shows the direction of linear polarization.
- $Q \propto\left|E_{x}\right|^{2}-\left|E_{y}\right|^{2}$
- $U \propto\left|E_{a}\right|^{2}-\left|E_{b}\right|^{2}=2 \operatorname{Re}\left(E_{x}^{*} E_{y}\right)$

Linear Polarization: Stokes Parameters

ψ : Position Angle (PA)

- In the right-handed coordinate system, the light is coming towards us in the z-direction.

- The position angle (PA) the plane of linear polarization is given by

$$
\frac{U}{Q}=\tan (2 \psi)
$$

Linear Polarization: Stokes Parameters

$Q_{ \pm i U: ~ S p i n-2 ~ F i e l d ~}^{\text {in }}$

- The complex combination, $Q \pm i U=P e^{ \pm 2 i \psi}$ where P is the "polarization intensity", transforms as a spin-2 field under coordinate rotation. $\mathbf{Z} \mathbf{Z}$
- Coordinate rotation by φ :

$$
\psi \rightarrow \psi^{\prime}=\psi-\varphi
$$

- Thus, $Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \varphi}(Q \pm i U) \stackrel{\bullet}{\mathbf{X}} \varphi \mathbf{x}^{\prime}$

6.2 Cosmic Birefringence

Let's calculate the linear polarization

 From $E_{ \pm}$to E_{x}, E_{y}- $E_{ \pm}=\left(E_{x} \mp i E_{y}\right) / \sqrt{2}($ Day 2)
- $E_{x}=\left(E_{+}+E_{y}\right) / \sqrt{2}$
- $E_{y}=i\left(E_{+}-E_{-}\right) / \sqrt{2}$
- $Q \propto\left|E_{x}\right|^{2}-\left|E_{y}\right|^{2}=2 \operatorname{Re}\left(E_{+}^{*} E_{-}\right)$
- $U \propto 2 \operatorname{Re}\left(E_{x}^{*} E_{y}\right)=2 \operatorname{lm}\left(E_{+}^{*} E_{-}\right)$

Carroll, Field, Jackiw (1990); Carroll, Field (1991); Harari, Sikivie (1992)

Cosmic Birefringence due to the CS term

Rotation of the plane of linear polarization

- $E_{ \pm}=\left(E_{x} \mp i E_{y}\right) / \sqrt{2}($ Day 2$)$

$$
A_{ \pm}^{\prime \prime}+\omega_{ \pm}^{2} A_{ \pm}=0, \quad \omega_{ \pm} \simeq k \mp \frac{\alpha \chi^{\prime}}{2 f}
$$

- $E_{x}=\left(E_{+}+E_{y}\right) / \sqrt{2}$
- $E_{y}=i\left(E_{+}-E_{-}\right) / \sqrt{2}$

$$
E_{ \pm} \propto \exp \left(-i \int d \tau \omega_{ \pm}+i \delta_{ \pm}\right)
$$

- $Q \propto\left|E_{x}\right|^{2}-\left|E_{y}\right|^{2}=2 \operatorname{Re}\left(E_{+}^{*} E_{-}\right)$
- $U \propto 2 \operatorname{Re}\left(E_{x}^{*} E_{y}\right)=2 \operatorname{lm}\left(E_{+}^{*} E_{-}\right)$

$$
Q \propto \cos \left[\int d \tau\left(\omega_{+}-\omega_{-}\right)-\left(\delta_{+}-\delta_{-}\right)\right]
$$

$$
U \propto \sin \left[\int d \tau\left(\omega_{+}-\omega_{-}\right)-\left(\delta_{+}-\delta_{-}\right)\right]
$$

Carroll, Field, Jackiw (1990); Carroll, Field (1991); Harari, Sikivie (1992)

Cosmic Birefringence due to the CS term

Rotation of the plane of linear polarization

- $E_{ \pm}=\left(E_{x} \mp i E_{y}\right) / \sqrt{2}($ Day 2)

$$
A_{ \pm}^{\prime \prime}+\omega_{ \pm}^{2} A_{ \pm}=0, \quad \omega_{ \pm} \simeq k \mp \frac{\alpha \chi^{\prime}}{2 f}
$$

- $E_{x}=\left(E_{+}+E_{y}\right) / \sqrt{2}$
- $E_{y}=i\left(E_{+}-E_{-}\right) / \sqrt{2}$

$$
E_{ \pm} \propto \exp \left(-i \int d \tau \omega_{ \pm}+i \delta_{ \pm}\right)
$$

- $Q \propto\left|E_{x}\right|^{2}-\left|E_{y}\right|^{2}=2 \operatorname{Re}\left(E_{+}^{*} E_{-}\right)$
- $U \propto 2 \operatorname{Re}\left(E_{x}^{*} E_{y}\right)=21 \mathrm{~m}\left(E_{+}^{*} E_{-}\right) Q \propto \cos$

$$
\psi=\frac{1}{2} \int_{d \tau\left(\omega_{+}-\omega_{-}\right)}^{\text {Rotation of PA! }-\frac{1}{2}\left(\delta_{+}^{\text {Initial PA } \left.-\delta_{-}\right)}\right.} \frac{\overline{\mathrm{Q}}^{=\tan (2 \psi)}}{U \underset{z}{\alpha} \sin \left[\int d \tau\left(\omega_{+}-\omega_{-}\right)-\left(\delta_{+}-\delta_{-}\right)\right]}
$$

Carroll, Field, Jackiw (1990); Carroll, Field (1991); Harări, Sikivie (1992)

Cosmic Birefringence

$$
\omega_{ \pm} \simeq k \mp \frac{\alpha \chi^{\prime}}{2 f}
$$

- Using $\omega_{+}-\omega_{-}=-\alpha \chi^{\prime} l f$, we find

$$
\begin{aligned}
\psi_{\mathrm{obs}}-\psi_{\mathrm{em}} & =-\frac{\alpha}{2 f} \int_{\tau_{\mathrm{em}}}^{\tau_{\mathrm{obs}}} d \tau \chi^{\prime} \\
& =-\frac{\alpha}{2 f}\left[\chi\left(\tau_{\mathrm{obs}}\right)-\chi\left(\tau_{\mathrm{em}}\right)\right]
\end{aligned}
$$

The rotation angle is given by the difference between scalar field values at the emission and observation times and is independent of events in-between.

$$
\psi>0 \text { is a }
$$ counter-clockwise rotation on the sky.

di Serego Alighieri (2017)

Cosmic Birefringence

In "CMB Convention"

- People working on the cosmic microwave background (CMB) use the opposite sign for the angle, called "CMB convention".

$$
\beta=+\frac{\alpha}{2 f}\left[\chi\left(\tau_{\text {obs }}\right)-\chi\left(\tau_{\mathrm{em}}\right)\right]
$$

 for the rest of this lecture.

Recap: Day 5

- A scalar field is a candidate for dark matter and dark energy.
- For a massive free field with $V(\chi)=m^{2} \chi^{2} / 2$, the cosmological evolution of χ is very different for $m<H$ ($\chi \sim$ const.) and $m>H$ (oscillation).
- The Chern-Simons interaction between X and photons rotates the plane of linear polarization of light.
- This effect, called "cosmic birefringence", is a signature of parity violation and a useful probe of the nature of dark matter and dark energy!

$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi F \widetilde{F}\right) \longmapsto \beta=+\frac{\alpha}{2 f}\left[\chi\left(\tau_{\mathrm{obs}}\right)-\chi\left(\tau_{\mathrm{em}}\right)\right]
$$

