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Topics
From the syllabus

1. What is parity symmetry? 


2. Chern-Simons interaction


3. Parity violation 1: Cosmic inflation  

4. Parity violation 2: Dark matter 


5. Parity violation 3: Dark energy


6. Light propagation: birefringence


7. Physics of polarization of the cosmic microwave background


8. Recent observational results, their implications, and future prospects
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3.1 Cosmic Inflation

3
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Cosmic Inflation: Key Features
More than 40 years of research in a single slide

• Inflation is the period of accelerated expansion in the very early Universe.


• If the distance between two points increases as a(t), d2a/dt2 > 0.


• Primordial fluctuations are generated quantum mechanically.


• Scalar modes: Density fluctuations –> The origin of all cosmic structure.


• Tensor modes: Gravitational waves –> Yet to be discovered. 


• Vector modes: ?


• A New Paradigm: Sourced contributions (this lecture)

This is the definition 
of inflation.
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Gravity + Quantum  

= The origin of all cosmic structure 
in the Universe
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• Exponential expansion stretches the wavelength of 
quantum fluctuations to cosmological scales.

Starobinsky (1980); Sato (1981); Guth (1981); 

Linde (1982);  Albrecht & Steinhardt (1982)

Quantum-mechanical fluctuation 
on microscopic scales

Exponential 
Expansion!

Cosmic Inflation

Mukhanov & Chibisov (1981); 

Hawking (1982); Starobinsky (1982); 


Guth & Pi (1982); 

Bardeen, Turner & Steinhardt (1983)
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https://www.ipmu.jp/sites/default/files/imce/news/41E_Feature.pdf

8

https://www.ipmu.jp/sites/default/files/imce/news/41E_Feature.pdf


What caused cosmic inflation?
No one knows!

• Einstein’s field equation tells us that d2a/dt2 is given by


• Such an energy component, P<-ρ/3, is not included in the standard model of 
elementary particles and fields. That is, cosmic inflation requires physics 
beyond the standard model.


• No one knows what caused inflation. In this lecture, we will simply assume 
that inflation occurred and that space expanded nearly exponentially in the 
early Universe.

• ρ: Total energy density.


• P: Total pressure.


• d2a/dt2 > 0 requires P < -ρ/3.
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Accelerated expansion –> Slow-roll parameter
The most important quantity: H(t) = dln(a)/dt = a-1 da/dt

• The most important quantity in cosmology is the expansion rate of space, 
called the “Hubble expansion rate”, defined by


• The accelerated expansion (d2a/dt2 > 0) implies 

“Slow-roll parameter” 

ε << 1 –> Hubble 
expansion rate 
changes slowly.
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(    )

ε << 1 –> Nearly exponential expansion
The most important quantity: H(t) = dln(a)/dt = a-1 da/dt

• The most important quantity in cosmology is the expansion rate of space, 
called the “Hubble expansion rate”, defined by


• The accelerated expansion (d2a/dt2 > 0) implies 

“Slow-roll parameter” 

During inflation, a(t) grows 
nearly exponentially
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ε << 1 –> Hubble 
expansion rate 
changes slowly.



In this lecture, we will study 
quantum mechanics in 
expanding space with  

H(t) ~ constant.
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We do not ask, “What caused inflation?”. Many smart 
people have studied this problem. No one yet knows the 

answer. It is certainly too difficult for me to answer.  
My approach: Only experiments will tell us the answer.  

Until then, let’s do what we can do!



3.2 EM in expanding space
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Recap: Maxwell’s equations in vacuum
Non-expanding space (see Day 2), in Heaviside units and c=1

• Maxwell’s equations in vacuum                              and                           gives


where


• With                                                   , one obtains    
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“Lorenz gauge condition”

The equation for a wave 

traveling at the speed of light!

with
“Coulomb gauge condition”in vacuum



Maxwell’s equations in vacuum
Expanding space, in Heaviside units and c=1

• In expanding space, one obtains


• Remarkably, it takes the same form as in non-expanding space, except for 
the change of variables from the physical time, t, to the conformal time, τ.


• The distance between two points in 4d spacetime:

where

[Expanding space]
[Non-expanding space]

with 15



Conformal transformation
Rescaling the metric tensor, gμν –> gμν’ = Ω2gμν

• The metric tensor describing a homogeneous, isotropic, spatially flat, and 
expanding background is conformal to the metric tensor describing the 
Minkowski space.


• How does the action for EM transform?
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Conformal transformation
Rescaling the metric tensor, gμν –> gμν’ = Ω2gμν

• The metric tensor describing a homogeneous, isotropic, spatially flat, and 
expanding background is conformal to the metric tensor describing the 
Minkowski space.


• How does the action for EM transform?
remains invariant 


under conformal transformation.
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The equation of motion remains the 

same as in the Minkowski spacetime, 


except for the change of variables, t –> τ.



Problem Set 3
Action for the vector potential

• Using  and , show that


• When                                                                              , 


show that                              

Fμν = ∂μAν − ∂νAμ xμ = (τ, x)
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where{ 

Hint: Use integration by parts and 

“Coulomb gauge condition”in vacuum

Hint:



E and B fields in expanding space
How are they related to the vector potential?

• We continue to define the E and B fields from the field strength tensor (Day 2):


• The action is
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This is a scalar and is invariant 

under parity transformation.



E and B fields in expanding space
How are they related to the vector potential?
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This is a scalar and is invariant 

under parity transformation.

• We continue to define the E and B fields from the field strength tensor (Day 2):


• The action is


• As shown in Problem Set 3,



• Therefore,


• The action is


• As shown in Problem Set 3,

E and B fields in expanding space
How are they related to the vector potential?
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Non-expanding case (Day 2)



3.3 Quantization of Aμ during 
inflation
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A note on terminology
“Photons” = Massless spin-1 particles

• We will study the evolution of Aμ during inflation with and without the Chern-
Simons term in the action.


• Since inflation occurred long before the electroweak symmetry breaking, 
“photons” as we know them did not exist during inflation.


• Although we will continue to use the term “photons”, in this lecture we should 
think of them more generally as “massless spin-1 particles”.


• In this lecture, we will use the units so that 
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Vacuum fluctuations: Quantization
Let’s get some photons out of the vacuum.

• The vacuum is not without particles. This is due to quantum mechanical zero-
point fluctuations.


• The standard procedure for quantizing fields starts with the second-order 
action (as shown in Problem Set 3):


• This means that A(τ,x) is the correct variable for quantization (the 
“canonical variable”).

24



• The vacuum is not without particles. This is due to quantum mechanical zero-
point fluctuations.


• The standard procedure for quantizing fields starts with the second-order 
action. With the helicity basis in Fourier space, 

• This means that A±(τ) is also the correct variable for quantization (the 
“canonical variable”).

Vacuum fluctuations: Quantization
Let’s get some photons out of the vacuum.
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Quantize!

• Writing the helicity states in terms of creation and annihilation operators,


with the commutation relation given by  


where


• âλ,k : Annihilation operator, to destroy a photon with λ and k.


• â†λ,k : Creation operator, to create a photon with λ and k.


• uλ,k : Mode function, to describe the photon spectrum. It satisfies
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This is quantization!



Quantize!

• Writing the helicity states in terms of creation and annihilation operators,


with the commutation relation given by  


• The mode function, uλ,k(τ), obeys the same equation of motion as Aλ,k(τ): 

where Cλ,k and Dλ,k are integration constants. How do we determine them?
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Solution

This is quantization!



The vacuum state
The choice of a vacuum state determines the normalization of uλ,k

• In quantum mechanics, we need to define a vacuum state, |0>. The 
annihilation operator acting on |0> leads to zero, i.e., âλ,k|0> = 0.


• The mode function satisfies the following equation in a vacuum state:


where ω is the frequency.


• Thus, ω=k, which is the dispersion relation for a massless particle, and Cλ,k=0. 
To determine Dλ,k, use the normalization condition for 


• The final result is
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Solution

This determines the spectrum of photons 

created quantum-mechanically 


during inflation!



Inflation cannot produce significant EM fields
…at least in Maxwell’s theory.

• |uλ,k|2 = 1/(2k)


• As                                                               , both E2 and B2 redshift away as a-4. 


• The EM energy density also redshifts (dilutes) away as ρEM = (E2+B2)/2 ~ a-4. 


• As a result, the EM fields described by Maxwell’s action cannot be produced 
significantly during inflation. In other words, Maxwell’s equations must be 
modified to produce astrophysically-relevant EM fields.


• To produce interesting EM fields quantum mechanically during inflation, 
Maxwell’s action must be modified.
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Turner, Widrow (1987)

The EM fields are diluted exponentially!



3.4 Production of Aμ with FF
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• Change t –> τ in


• The mode function satisfies


• The solution now admits a growing mode (instability) if k2 - kα|θ’| < 0! 

The mode function
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Parity violation 
The equation of motion 

depends on handedness!

k < α|θ’|

(see Day 2)
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Particle production due to θFF during inflation
Kinetic energy of θ is used to produce massless spin-1 particles

~ Anber, Sorbo (2010)

where

(Problem Set 3)

(                       )

• Instability occurs when -kτ < 2|ξ|.


• The mode function for one of the helicity states is amplified on large scales 
(small -kτ) relative to the vacuum solution, e-ikτ/√2k. 

• The right-handed (+ helicity) state is amplified for ξ>0, whereas the left-
handed (- helicity) state remains close to the vacuum solution.


• Parity violation!
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Particle production due to θFF during inflation
Kinetic energy of θ is used to produce massless spin-1 particles

~ Anber, Sorbo (2010)

where

(Problem Set 3)

(                       )

• The + helicity state is amplified for ξ>0. 


• The mode function for one of the helicity states is amplified on large scales 
(small -kτ) relative to the vacuum solution, e-ikτ/√2k. 

• The approximate solution for ξ=constant and -kτ < 2ξ is given by

Exponential amplification for πξ>1!

• Parity violation!



OK, that’s enough. 

What does all this mean for 
observations?
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The full action
Observational consequences
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[no one understands this]

• f: “decay constant” of χ. It is 184 MeV for 
a pion, but it is much, much larger for the 
field that we will discuss in this lecture.

Scalar fluctuations

where

Gravitational waves



Recap: Day 3

• No one knows what caused cosmic inflation.


• Therefore, we choose to study physics given the inflationary background.


• The expansion rate, H(t), varies slowly during inflation: 


• The second-order action in the form of 


is necessary to quantize a variable A (called the “canonical variable”).


• The Chern-Simons term amplifies one of the helicity states of massless spin-1 
particles relative to the vacuum –> Parity violation. 


• Observational consequences for the density fluctuation and gravitational 
waves! 36


