$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi F \widetilde{F}\right)
$$

In search of new physics for the Universe
The lecture slides are available at
https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html

Eiichiro Komatsu (Max Planck Institute for Astrophysics) Nagoya University, June 6-30, 2023

2

Topics

From the syllabus

1. What is parity symmetry?
2. Chern-Simons interaction
3. Parity violation 1: Cosmic inflation

$$
I_{\mathrm{CS}}=\int \mathrm{d}^{4} x \sqrt{-g}\left(-\frac{\alpha}{4 f} \chi F \widetilde{F}\right)
$$

4. Parity violation 2: Dark matter
5. Parity violation 3: Dark energy
6. Light propagation: birefringence
7. Physics of polarization of the cosmic microwave background
8. Recent observational results, their implications, and future prospects

2.1 Parity Symmetry in Electromagnetism (EM)

Maxwell's Equations

In Heaviside units and c=1

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\rho, & -\dot{\mathbf{E}}+\nabla \times \mathbf{B}=\mathbf{j} \\
\nabla \cdot \mathbf{B} & =0, & \dot{\mathbf{B}}+\nabla \times \mathbf{E}=0
\end{aligned}
$$

- These equations are invariant under both spatial translation and rotation.
- They are also invariant under parity transformation, if \mathbf{E} and \mathbf{j} are vectors, ρ is a scalar, and \mathbf{B} is a pseudovector.

Parity-flipping Maxwell's Equations

In Heaviside units and c=1

$$
\begin{aligned}
(-\nabla) \cdot(-\mathbf{E})=\rho, & & -(-\dot{\mathbf{E}})+(-\nabla) \times \mathbf{B}=(-\mathbf{j}) \\
(-\nabla) \cdot \mathbf{B}=0, & & \dot{\mathbf{B}}+(-\nabla) \times(-\mathbf{E})=0
\end{aligned}
$$

- These equations are invariant under both spatial translation and rotation.
- They are also invariant under parity transformation, if \mathbf{E} and \mathbf{j} are vectors, ρ is a scalar, and \mathbf{B} is a pseudovector.

Parity-flipping Maxwell's Equations

In Heaviside units and c=1

$$
\begin{array}{rlr}
(-\nabla) \cdot(-\mathbf{E})= & \rho, \quad-(-\dot{\mathbf{E}})+(-\nabla) \times \mathbf{B}=(-\mathbf{j}) \\
(-\nabla) \cdot \mathbf{B}= & 0, & \dot{\mathbf{B}}+(-\nabla) \times(-\mathbf{E})=0 \\
& \underset{\substack{\text { If there is a magnetic monopole } \\
\text { it must be a pseudoscalar! }}}{ }
\end{array}
$$

- They are also invariant under parity transformation, if \mathbf{E} and \mathbf{j} are vectors, ρ is a scalar, and \mathbf{B} is a pseudovector.

Simplifying Maxwell's Equations

Let's go 4D.

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=\rho, \quad-\dot{\mathbf{E}}+\nabla \times \mathbf{B}=\mathbf{j} \\
& \hline \nabla \cdot \mathbf{B}=0, \quad \dot{\mathbf{B}}+\nabla \times \mathbf{E}=0
\end{aligned}
$$

- These equations can be written in a compact form as

$$
\partial_{\nu} F^{\mu \nu}=j^{\mu} \quad \partial_{\nu} \tilde{F}^{\mu \nu}=0
$$

$$
\mu=0,1,2,3, \quad j^{\mu}=(\rho, \mathbf{j}), \quad \partial_{\mu}=\partial / \partial x^{\mu}, \quad x^{\mu}=(t, \mathbf{x})
$$

Antisymmetric Field Strength Tensor, Fuv

$F^{\mu v}=-F^{v} \mu$

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

- Equivalently,

$$
\underset{\substack{F^{0 i}=E_{i} \\
F^{i j}=\epsilon^{i j k} B_{k} \\
F^{12}=B_{z}, F^{23}=B_{x}, F^{31}=B_{y} \\
F^{21}=-B_{z}, F^{32}=-B_{x}, F^{13}=-B_{y}}}{\substack{\text { Levi-Civita } \\
\text { symbol }}} \begin{gathered}
t i j k(\mathrm{i}, \mathrm{j}, \mathrm{k}) \text { is even permutation of }(1,2,3) \\
-1 \text { if }(\mathrm{i}, \mathrm{j}, \mathrm{k}) \text { is odd permutation of }(1,2,3) \\
0 \text { otherwise } \\
\epsilon^{123}=1, \epsilon^{132}=-1, \epsilon^{312}=1, \ldots
\end{gathered}
$$

Antisymmetric Field Strength Tensor, $F_{\mu \mathrm{v}}$

$F_{\mu \mathrm{v}}=-F_{\mathrm{v} \mu}$

$$
F_{\mu \nu}=\eta_{\mu \alpha} \eta_{\nu \beta} F^{\alpha \beta} \quad \text { where } \eta_{\mu \alpha}=\operatorname{diag}(-1,1,1,1)
$$

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

- Therefore,

$$
F^{2} \equiv F_{\mu \nu} F^{\mu \nu}=2(\mathbf{B} \cdot \mathbf{B}-\mathbf{E} \cdot \mathbf{E})
$$

This is a scalar and is invariant under parity transformation.

Dual Field Strength Tensor, \tilde{F}^{Av}
$\tilde{A}_{\tilde{w}}=-\tilde{F}$

$$
\tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta} \text { where } \underset{\substack{\text { Levi-cicita } \\ \text { symbol }}}{\epsilon^{\mu \nu \alpha \beta}}=\{
$$

$$
+1 \begin{gathered}
\text { if }(\mu, v, v, \beta) \text { is even } \\
\text { of }(0,1,2,3)
\end{gathered}
$$

$$
-1^{\text {if }(\mu, v, a, \beta) \text { is odd perm. }} \begin{gathered}
\text { of }(0,1,2,3)
\end{gathered}
$$

0 otherwise

$$
\tilde{F}^{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & -E_{z} & E_{y} \\
-B_{y} & E_{z} & 0 & -E_{x} \\
-B_{z} & -E_{y} & E_{x} & 0
\end{array}\right) \Rightarrow \begin{aligned}
& \text { Equivalently, } \\
& \tilde{F}^{0 i}=B_{i} \\
& \tilde{F}^{i j}=-\epsilon^{i j k} E_{k}
\end{aligned}
$$

- Therefore,

$$
F \tilde{F} \equiv F_{\mu \nu} \tilde{F}^{\mu \nu}=-4 \mathbf{B} \cdot \mathbf{E}
$$

2.2 Action Principle for EM

$$
\partial_{\nu} F^{\mu \nu}=j^{\mu}, \quad \partial_{\nu} \tilde{F}^{\mu \nu}=0
$$

What is the action that gives Maxwell's equations?

 In Heaviside units and $c=1$- The answer is

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu} \quad d^{4} x=d t d^{3} \mathbf{x}
$$

with
Vector potential

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \text { where } A_{\mu}=(-\phi, \mathbf{A})
$$

Therefore, $\left\{\begin{array}{l}F_{i 0}=\partial_{i} A_{0}-\dot{A}_{i}=E_{i} \\ F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}=\epsilon_{i j k} B_{k}\end{array} \quad \mathbf{E}=-\nabla \phi-\dot{\mathbf{A}}=\begin{array}{l}\mathbf{B}=\nabla \times \mathbf{A}\end{array}\right.$

$$
\partial_{\nu} F^{\mu \nu}=j^{\mu}, \quad \checkmark \partial_{\nu} \tilde{F}^{\mu \nu}=0
$$

What is the action that gives Maxwell's equations?

 In Heaviside units and $c=1$- The answer is

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu} \quad d^{4} x=d t d^{3} \mathbf{x}
$$

with

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \text { where } A_{\mu}=(-\phi, \mathbf{A})
$$

One set of Maxwell's equations is simply given by the definition of $F_{\mu v}$:

$$
\partial_{\nu} \tilde{F}^{\mu \nu}=\partial_{\nu} \frac{1}{2} \epsilon^{\mu \nu \alpha \beta}\left(\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}\right)=\epsilon^{\mu \nu \alpha \beta} \partial_{\nu} \partial_{\alpha} A_{\beta}=0
$$

$\checkmark \partial_{\nu} F^{\mu \nu}=j^{\mu}, \quad \partial_{\nu} \tilde{F}^{\mu \nu}=0$

What is the action that gives Maxwell's equations?

In Heaviside units and $c=1$

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu}
$$

- The idea: The equation of motion for A_{μ} is the path that gives a stationary point. For a small change in $A_{\mu} \rightarrow>A_{\mu}+\delta A_{\mu}$, the corresponding change in $I->I+\delta /$ is also small.

$$
\begin{aligned}
& \delta I=\int d^{4} x F^{\mu \nu} \partial_{\nu}\left(\delta A_{\mu}\right)+\int d^{4} x\left(\delta A_{\mu}\right) j^{\mu \quad} \begin{aligned}
\frac{\text { Hint: }}{\delta\left(F^{2}\right)} & =2 F^{\mu \nu} \delta F_{\mu \nu} \\
& =-4 F^{\mu \nu} \partial_{\nu}\left(\delta A_{\mu}\right)
\end{aligned} \\
& =\int d^{4} x\left(-\partial_{\nu} F^{\mu \nu}+j^{\mu}\right) \delta A_{\mu}=0 \rightarrow \partial_{\nu} F^{\mu \nu}=j^{\mu}
\end{aligned}
$$

Finding symmetries in the action

It is like a treasure hunt!

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu}
$$

- This action is invariant under spatial translation, rotation, and parity transformation.
- It is also invariant under the following "gauge transformation",

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} f
$$

Integration

$$
\int d^{4} x\left(\partial_{\mu} f\right) j^{\mu} \stackrel{\text { Hint: }}{=}-\int d^{4} x f \partial_{\mu} j^{\mu}=0
$$

- Here, f is an arbitrary scalar function.

$$
\partial_{\mu} j^{\mu}=0 \rightarrow \dot{\rho}+\nabla \cdot \mathbf{j}=0
$$

Finding symmetries in the action

It is like a treasure hunt!

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu}
$$

- This action is invariant under spatial translation, rotation, and parity transformation.
- It is also invariant under the following "gauge transformation",

$$
\begin{aligned}
\phi & \rightarrow \phi-\dot{f} \\
\mathbf{A} & \rightarrow \mathbf{A}+\nabla f
\end{aligned}
$$

- Here, f is an arbitrary scalar function.

$$
\int d^{4} x\left(\partial_{\mu} f\right) j^{\mu} \stackrel{\downarrow}{=}-\int d^{4} x f \partial_{\mu} j^{\mu}=0
$$

$$
\partial_{\mu} j^{\mu}=0 \rightarrow \dot{\rho}+\nabla \cdot \mathbf{j}=0
$$

Problem Set 2
 Playing with Maxwell

1. Derive Maxwell's equations from $\partial_{\nu} F^{\mu \nu}=j^{\mu}, \partial_{\nu} \tilde{F}^{\mu \nu}=0$.
2. Show that $F \tilde{F}$ is a total derivative and can be written as

$$
F_{\mu \nu} \tilde{F}^{\mu \nu}=2 \partial_{\mu}\left(A_{\nu} \tilde{F}^{\mu \nu}\right)
$$

2.3 F \tilde{F} in the action

$F \widetilde{F}$ in the action?

$$
I=-\frac{1}{4} \int d^{4} x F^{2}+\int d^{4} x A_{\mu} j^{\mu}
$$

- This action is sufficient to produce all of Maxwell's equations.
- Can we add $\int d^{4} x F \tilde{F}$ to the action?
- The answer is yes. However, this is only a surface term, since $F \tilde{F}$ is a total derivative (as shown in Problem Set 2).

$F \widetilde{F}$ in the action

 Carroll, Field, Jackiw (1990)
Chern-Simons term

- Consider $I_{\mathrm{CS}}=-\frac{1}{4} \alpha \int d^{4} x \theta F \tilde{F} \quad$ with $F \tilde{F}=2 \partial_{\mu}\left(A_{\nu} \tilde{F}^{\mu \nu}\right)$
- α : a dimensionless constant
- θ : a dimensionless pseudoscalar field
- This is not a surface term! Integration by parts gives

$$
I_{\mathrm{CS}}=\frac{1}{2} \alpha \int d^{4} x\left(\partial_{\mu} \theta\right) A_{\nu} \tilde{F}^{\mu \nu}
$$

- This is a special case of the so-called Chern-Simons term, $p_{\mu} A_{\nu} \tilde{F}^{\mu \nu}$

$$
\text { with } p_{\mu}=\partial_{\mu} \theta
$$

Consistency with gauge invariance

p_{μ} cannot be arbitrary

$$
I_{\mathrm{CS}}=\frac{1}{2} \alpha \int d^{4} x p_{\mu} A_{\nu} \tilde{F}^{\mu \nu}
$$

- This action is invariant under the gauge transformation, $A_{\nu} \rightarrow A_{\nu}+\partial_{\nu} f$ if $\partial_{\nu} p_{\mu}-\partial_{\mu} p_{\nu}=0 \quad$ Hint: Use integration by parts and the identity
- For example:

$$
\partial_{\nu} \tilde{F}^{\mu \nu}=0
$$

- p_{μ} is a constant vector and not dynamical.
- p_{μ} is a gradient of a dynamical (pseudo)scalar field, such as $p_{\mu}=\partial_{\mu} \theta$.

Consistency with gauge invariance

p_{μ} cannot be arbitrary

$$
I_{\mathrm{CS}}=\frac{1}{2} \alpha \int d^{4} x p_{\mu} A_{\nu} \tilde{F}^{\mu \nu}
$$

- This action is invariant under the gauge transformation, $A_{\nu} \rightarrow A_{\nu}+\partial_{\nu} f$ if $\partial_{\nu} p_{\mu}-\partial_{\mu} p_{\nu}=0 \quad$ Hint: Use integration by parts and the identity
- For example: This implies the presence of a preferred direction in spacetime

$$
\partial_{\nu} \tilde{F}^{\mu \nu}=0
$$

and violation of Lorentz invariance!

- p_{μ} is a constant vector and not dynamical, or
- p_{μ} is a gradient of a dynamical (pseudo)scalar field, such as $p_{\mu}=\partial_{\mu} \theta$.

The main goals of this lecture series

Let's find new physics!

- We will study the cosmological consequence of

$$
I_{\mathrm{CS}}=-\frac{1}{4} \alpha \int d^{4} x \theta F \tilde{F}
$$

- Specifically, we ask if θ is -
- active during cosmic inflation,
- responsible for dark matter, or
- responsible for dark energy.

The main goals of this lecture series

Let's find new physics!

- We will study the cosmological consequence of

$$
I_{\mathrm{CS}}=-\frac{1}{4} \alpha \int d^{4} x \theta F \tilde{F}
$$

- Specifically, we ask if θ is - . We will also study observational signatures in -
- active during cosmic inflation,
- responsible for dark matter, or
- responsible for dark energy.
- Cosmic microwave background,
- Gravitational waves, and
- Large-scale structure of the Universe.

Is there a known example of this term in particle physics? Yes, a pion.

- A pion is a composite meson composed of a quark and an antiquark.
- A neutral pion, π^{0}, is composed of either $u \bar{u}$ or d \bar{d}, and is a pseudoscalar.
(Chinowsky \& Steinberger, 1954)
- π^{0} is coupled to photons via Ics where
- $\theta=\pi^{0} / f_{\pi}$ with $f_{\pi} \sim 184 \mathrm{MeV}$ (pion decay constant)
- $a=2 a_{\mathrm{Em}} N_{\mathrm{c}} /(3 \pi)$ with $N_{\mathrm{c}}=3$ (the number of quark colors) and $\mathrm{a}_{\mathrm{Em}} \sim 1 / 137$ (EM fine structure constant)
- π^{0} decays into 2 photons via this term, which has been observed. So, what we are going to study in this lecture is not completely crazy!

Correction to Maxwell's equations

In Heaviside units and c=1

$$
I=-\frac{1}{4} \int d^{4} x\left(F^{2}+\alpha \theta F \tilde{F}\right)+\int \begin{gathered}
d^{4} x=d t d^{3} \mathbf{x} \\
d^{4} x A_{\mu} j^{\mu} \\
\text { Hint: } \delta(F \tilde{F})=\epsilon^{\mu \nu \alpha \beta}\left(\delta F_{\mu \nu}\right) F_{\alpha \beta}
\end{gathered}
$$

- We now derive the correction to Maxwell's equations from
- Finding the path that gives a stationary point,

$$
=-4\left(\partial_{\nu} \delta A_{\mu}\right) \tilde{F}^{\mu \nu}
$$

$$
\begin{aligned}
& \delta I=\int d^{4} x\left(F^{\mu \nu}+\alpha \theta \tilde{F}^{\mu \nu}\right) \partial_{\substack{\nu \\
\boldsymbol{V}^{\text {Integration }} \text { by parts }}}\left(\delta A_{\mu}\right)+\int d^{4} x\left(\delta A_{\mu}\right) j^{\mu} \\
& =\int d^{4} x\left[\underline{-\partial_{\nu}\left(F^{\mu \nu}+\alpha \theta \tilde{F}^{\mu \nu}\right)+j^{\mu}}\right] \delta A_{\mu}^{\text {by pars }}=0
\end{aligned}
$$

Correction to Maxwell's equations

In Heaviside units and c=1

- Therefore, the correction to Maxwell's equations is Hint: $\partial_{\nu} \tilde{F}^{\mu \nu}=0$

$$
\partial_{\nu} F^{\mu \nu}+\alpha\left(\partial_{\nu} \theta\right) \tilde{F}^{\mu \nu}=j^{\mu}
$$

- The result is

$$
\begin{aligned}
& =\int d^{4} x\left[\underline{\left.-\partial_{\nu}\left(F^{\mu \nu}+\alpha \theta \tilde{F}^{\mu \nu}\right)+j^{\mu}\right]}\right]_{0}^{\text {by pats }} \delta A_{\mu}=0
\end{aligned}
$$

2.4 Parity Violation in EM Waves

Warm-up: The wave equation for A^{μ}

Maxwell's equations in vacuum

- Maxwell's equations in vacuum $\partial_{\nu} F^{\mu \nu}=0$ gives

$$
-\square A^{\mu}+\eta^{\mu \alpha} \partial_{\alpha}\left(\partial_{\nu} A^{\nu}\right)=0
$$

where

$$
\begin{aligned}
\square & =\eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta}=-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2} \\
A^{\mu} & =\eta^{\mu \alpha} A_{\alpha}=(\phi, \mathbf{A})
\end{aligned}
$$

$$
\eta^{\alpha \beta}=\operatorname{diag}(-1, \mathbf{1})
$$

"Lorenz gauge condition"

- Now, using invariance under the gauge transformation, we can set $\partial_{\nu} A^{\nu}=0$ by choosing $\square f=-\partial_{\nu} A^{\nu}$ in $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} f$. Then...

Warm-up: The wave equation for A^{μ}

The use case of the gauge invariance

"Lorenz gauge condition"

- Maxwell's equations in vacuum $\partial_{\nu} F^{\mu \nu}=0$ and $\partial_{\nu} A^{\nu}=0$ gives

$$
\square A^{\mu}=0 \quad \square \begin{gathered}
\text { The equation for a wave } \\
\text { traveling at the speed of liah }
\end{gathered}
$$

where

$$
\begin{aligned}
\square & =\eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta}=-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2} \\
A^{\mu} & =\eta^{\mu \alpha} A_{\alpha}=(\phi, \mathbf{A}) \text { with } \dot{\phi}+\nabla \cdot \mathbf{A}=0
\end{aligned}
$$

- The number of degrees of freedom for $A \mu$ is 3 due to the Lorenz gauge condition.

Physical degrees of freedom of EM waves

3? 2?

- We know that photons must have only 2 helicity states, $\lambda= \pm 1$ (two circular polarization states).
- Shouldn't the number of physical degrees of freedom be 2 , instead of 3 ? The answer is yes.
- The Lorenz gauge does not fully specify A^{μ}. We can still add

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} f_{2}
$$

which satisfies $\square f_{2}=0$

- Choosing f_{2} will fully specify A^{μ}. This leaves 2 degrees of freedom.

EM waves must be transverse

- It is common to choose f and f_{2} such that

$$
\phi=0, \quad \mathbf{\nabla}_{\text {in vacuum }} \cdot \boldsymbol{A}=\mathbf{0}_{\text {"Coulomb gauge condition" }}
$$

- This choice is consistent with the Lorenz gauge condition $\dot{\phi}+\nabla \cdot \mathbf{A}=0$
- $\nabla \cdot \mathbf{A}=0$ requires that the EM wave be transverse, i.e., the change in \mathbf{A} is perpendicular to the direction of propagation of the EM wave.
- We will use this condition throughout the lecture.

Correction to the EM wave equation

With the Chern-Simons term

$$
\partial_{\nu} F^{\mu \nu}+\alpha\left(\partial_{\nu} \theta\right) \tilde{F}^{\mu \nu}=0
$$

- With $A^{0}=\phi=0$ in the Lorenz gauge, we find

$$
-\square A^{i}+\alpha\left(\partial_{\nu} \theta\right) \tilde{F}^{i \nu}=0
$$

$$
\begin{aligned}
\square & =\eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta}=-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2} \\
A^{\mu} & =\eta^{\mu \alpha} A_{\alpha}=(\phi, \mathbf{A})
\end{aligned}
$$

$$
\ddot{\mathbf{A}}-\nabla^{2} \mathbf{A}+\underbrace{\alpha[-\dot{\theta}(\nabla \times \mathbf{A})+(\nabla \theta) \times \dot{\mathbf{A}}]}_{\text {Correction to the EM wave equation! }}=0
$$

Helicity Basis

Going to Fourier space

- Fourier transform of $\mathbf{A}(t, \mathbf{x})$ is $\mathbf{A}(t, \mathbf{x})=(2 \pi)^{-3 / 2} \int d^{3} \mathbf{k} \quad \mathbf{A}_{\mathbf{k}}(t) e^{i \mathbf{k} \cdot \mathbf{x}}$
- The EM wave propagates in the direction of \mathbf{k}. The change in $\mathbf{A}_{\boldsymbol{k}}$ is perpendicular to \mathbf{k}.
"Coulomb gauge" $\nabla \cdot \mathbf{A}(t, \mathbf{x})=0 \rightarrow \mathbf{k} \cdot \mathbf{A}_{\mathbf{k}}(t)=0$
- Choose \mathbf{k} to be on the $\mathrm{z}\left(=\mathrm{x}^{3}\right)$ axis. The helicity states, $\lambda= \pm 1$, are given for each Fourier mode by

$$
A_{ \pm}=\frac{A_{\mathbf{k}}^{1} \mp i A_{\mathbf{k}}^{2}}{\sqrt{2}}
$$

Helicity Basis

Transformation property under rotation

- To show that $A_{ \pm}$represents the helicity states, rotate the spatial coordinates around the z axis in the right-handed system by an angle φ.
- The helicity states, $\lambda= \pm 1$, transform as

$$
\begin{aligned}
& A_{\lambda} \rightarrow A_{\lambda}^{\prime}=e^{i \lambda \varphi} A_{\lambda} \\
& \begin{array}{c}
\text { A+licity } \\
\text { A-: }^{\prime}: \text { Right-handed state }
\end{array}
\end{aligned}
$$

Correction to the EM wave equation

In the helicity basis

Note: \mathbf{A} is a vector and θ is a pseudoscalar.

$$
\ddot{\mathbf{A}}-\nabla^{2} \mathbf{A}+\frac{\alpha[-\dot{\theta}(\nabla \times \mathbf{A})+(\nabla \theta) \times \dot{\mathbf{A}}]}{\text { Correction to the EM wave equation! }}=0
$$

- To simplify the analysis, assume that θ is homogeneous and depends only on time, $\theta(\mathrm{t}, \mathbf{x}) \rightarrow \bar{\theta}(\mathrm{t}$. Then in Fourier space

$$
\ddot{\mathbf{A}}_{\mathbf{k}}+k^{2} \mathbf{A}_{\mathbf{k}}-i \alpha \dot{\bar{\theta}}(\mathbf{k} \times \mathbf{A})=0
$$

$$
\ddot{A}_{ \pm}+\left(k^{2} \mp k \alpha \dot{\bar{\theta}}\right) A_{ \pm}=0
$$

Recap: Day 2

- There are 2 scalars composed of $F_{\mu v}$ and $\tilde{F}_{\mu v}$.
- F^{2} is a scalar, whereas $F \tilde{F}$ is a pseudoscalar.
- The action $\int d^{2} d^{3} \mathbf{x} F^{2}$ gives Maxwell's equations, whereas $\int{\mathrm{d} t d^{3} \mathbf{x}}_{\mathbf{x}} \boldsymbol{F} \tilde{F}$ is a surface term.
- A Chern-Simons interaction between a pseudoscalar field θ and photons, $\int d^{1}{ }^{3} \mathbf{x} \theta F \widetilde{F}$, modifies Maxwell's equations.
- The equation of motion for EM waves depends explicitly on helicity states. This is the signature of violation of parity symmetry! $\ddot{A}_{ \pm}+\left(k^{2} \mp k \alpha \dot{\bar{\theta}}\right) A_{ \pm}=0$
- What is the cosmological implication of this term? Let's find out!

