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Votivation

 We wish to measure angular diameter distances!
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HOow do we Know the
intrinsic physical size”

e TwoO methods:

1. To estimate the physical size of an object from
observations

2. To use the “standard ruler”
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Galaxy Clusters Rt

 Combination gives the LOS extension
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* Assuming spherical symmetry and
using the measured angular extension,
we get Da




Galaxy Cluster Hubble Diagram

 Bonamente et al (2006)
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Galaxy C\usters VS Type la SN
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Example #2:
Baryon Acoustic Oscillation

* Use known, well-calibrated, specific features in
the 2-point correlation function of matter in
angular and redshift directions

 Mapping the observed separations of galaxies to
the comoving separations:

Az = H(z)Ar; [Line-of-sight direction]
Ar) © dZ
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Two-point Correlation Function times Separa’[ion2
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This “teature,” 1.e., a non-power-law shape,
can be used to determine H(z) and da(z)
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BAO Hubble D|agram
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Da: Current Situation

e X-ray + SZ: already systematics limited per cluster
* Departure from spherical symmetry
e (Gas clumpiness, <n2>/<n>2

« BAO: precise measurements, but requires a huge
number of galaxies to average over per redshift

bin, and each BAO project takes more than ten
years from the construction to the completion



Refined Motivation

* We wish to measure Da to ~10% precision per redshift,
over many redshifts

e Better than galaxy clusters per object

* Less demanding than BAO measurements
‘depending on how you look at them]

- We propose to use strong lenses to achieve this
e Goal: “One [or two] distance per graduate student”

e With the existing facilities



Strong Lens -> Da: Logic

* |f we know the “physical size of the lens”, we can
estimate Da from the observed image separations

* Jo simplity the logic, let us equate the “physical
size of the lens” with the “impact parameter of a
photon path,” b [i.e., the distance of the closest
approach to the lens]

Source




[Simplified] Physical Picture

* Three observables
* Image positions, 6=b/Da
o Stellar velocity dispersion, 02 ~ GM/b
 Time delay, T ~ GM
* Thus, we can predict the impact parameter, b, from

the stellar velocity dispersion and the time delay,
and the image positions give a direct estimate of Dal



| Geometric] Time Delay

Source

* For a point mass lens, the difference between
time delays due to the difference in light paths
IS given by

b2 — b3
b10-

[7_1 _ 7_Z]ge()metry — 4GM(1 + Z)

*we need an asymmetric system, b1=b>



' Potential| Time Delay

Source

* For a point mass lens, the difference between
time delays due to the difference in potential
depths is given by

[7_1 o TQ]potential — 4GM(1 -+ z) In <_>

*we need an asymmetric system, b1=b>



An Extended Lens: SIS

Source

Da(EL) Da(LS)
Da(ES)

e As the first concrete calculation, let us study a
singular isothermal sphere (SIS), p(r) ~ r=2



An Extended Lens: SIS

Source

Da(ES)

o 01+ 60> DA(ES)
_ 2 _ 1 2 VA
Velocity disp: o 37 Da(LS)

1
Time-delay diff: 71 — T2 = 5(1 + 21



Paraficz & Hjorth (2009)

An Extended Lens: SIS

DA(E
Velocity disp: o2 = 21t 02 DalES)

ST DA(LS)
1 DA(EL)DA(ES
Time-delay diff: 71 — T2 = 5(1 + 21 A(DA)(Lg)( )(9% — 605)
1 — T2




Expected Uncertainty in Da

* |gnoring uncertainties in image positions [which are
small], the uncertainty in Da is the quadratic sum of
the uncertainties in the time delay and o2

 For example, B1608+656: B1608+656
e Errlo?]/02 = 12%

e Err[AT|/AT = 3-6%

Thus, we expect the uncertainty
in the velocity dispersion to
dominate the uncertainty in Da

1 ]|
[of order 10%)] O 2010)




Jee, EK & Suyu (in prep)

More Realistic Analysis

* We extend the SIS results of Paraficz & Hjorth to
include:

e Arbitrary power-law spherical density, p~r-v

* Hence, radius-dependent stellar velocity
dispersion, o2(r)

* External convergence

* Anisotropic stellar velocity dispersion
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External Convergence

e S0 far, the analysis assumes that the observed lensed
Images are caused entirely by the lens galaxy

* However, Iin reality there are extra masses, which are not
associated with the lens galaxy, along the line of sight

* This is the so-called “external convergence”, Kexi

* Jaking this account reduces the contribution from
the lens galaxy to the total deflection by 1—Kexi,

modifying the relationship between the time delay
and the lens mass



Effect of Koyt Adue to
a uniform mass sheet

* The difference between time delays between two
Images Is caused by the lens mass only. The
additional contribution from a uniform mass sheet
does not contribute to the time-delay difference:

(07 — 03)




Effect of Koyt Adue to
a uniform mass sheet

* [The observed stellar velocity dispersion is solely
due to the lens mass distribution, while the
observed image separations contain the

contributions from the lens galaxy and a mass
sheet:

01+ 02 DA(ES)
= 1 — ex 1
d (_K/t> ST DA(LS)




Effect of Koyt Adue to
a uniform mass sheet

e Therefore, remarkably, the inferred angular
diameter distance is independent of Kext from a
uniform mass sheet:

(01 —02)DA(FEL) =

T — T9
47T0'2(1 ZL)

- This property is not particular to SIS, but is generic



Anisotropic Velocity
Dispersion

 We use the measured stellar velocity dispersion to
determine the mass enclosed within lensed images

 However, this relation depends on anisotropy of the
velocity dispersion, such that

1 d(p.o?) o?(r) GM(<r)
T i 2 T —
p«(r) dr Blr) r 12
* where o
B(r) = 1 0f(r) }or radial dispersion |

{01 transverse dispersion



Anisotropic Velocity
Dispersion

* \WWe parametrize the anisotropy function, (3(r),
following Merritt (1985) [also Osipkov (1979)]

o2(r) _ 1
A(r) 7+ (nres)?

oroff IS the effective radius of the lens galaxy, and
*n is a free parameter to marginalize over [0.5,5]

pr) =1

o

* Smaller n -> Smaller total kinetic energy [given o]
-> Shallower gravitational potential

e Since GM is fixed, a smaller GM/b implies a
larger physical size of the lens -> Larger Da



Stellar Density Distribution

* [or the stellar density distribution, we take
Hernquist’s protile:

P (1) o

r(r+a)’

 where a=0.551Res. With this distribution, we
calculate the observable, i.e., the projected line-of-
sight velocity dispersion at a projected radius of R:

L g ] g

AR =2A1R) [ dr 1= | R

* where [(R) is the projected Hernquist profile



Which R to measure os?

* The mass estimate given the observed projected
velocity dispersion, os(R), is heavily affected by

anisotropy. At first sight, this may seem to ruin a whole
thing...

 However, Wolf et al. (2010) show that the estimate of
the mass enclosed within the 3-d halt-light radius, r1,
IS Insensitive to anisotropy. This is a great news!

* The 2-d projected effective radius Is Refi~(3/4)r1)2

* This is true for systems with 0° ~ constant over radii
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Even Better:
‘Sweet-spot Radius”

e Lyskova et al. (2014) [also Churazov et al. (2010)]
show that the radius at which the effect of anisotropic
velocity dispersion is minimised depends on the
local slope of the stellar surface brightness profile

e Specifically, they compute the “sweet-spot radius”,
Rsweet, at which the local surface brightness profile
IS [(R)~R=2. Rsweet IS 0.78Rest for Hernquist’s profile

* This is an improvement over Wolf et al. (2010)

* We use both Wolf et al. (2010) and the sweet-spot
radius to calculate the expected uncertainties in Da



System 1: B1608+656

The power-law mass
density slope Is p~r-2.08+0.03
[G1]

Re=0.58 arcsec

os[G1; averaged over
0.84”] = 260 + 15 km/s

Time delays: qn

Atap =31.5770 days — Suyuetal (2010)
Atopg =36. O+ > days

Atpp =T77.01% 0 0 days We will use only CD [for now]

Atop =Atop — Atpp = —41. 0Jr s days



Approximate Likelihood of Da

(05 —260)%
P(D 5|data) do d
(D 4|data) / o /0 n exp WVar(oy)

DA L Dmodel(a_iso)]

Tiso — 0s(n)]

* Assumptions: < Sl

 We ignore the sub-dominant uncertainties in the density
slope, v, the time delays, and the image positions

* [he current velocity dispersion measurement is the
aperture-averaged value, rather than at Rest Or Rsweet;
however, we pretend that it is at Resf O Rsweet, 1.€., 11 1S @
forecast rather than the measurement. [We will also
investigate what the current data can tell us]



Proceqgures

* We first assume that B1608+656 has an anisotropic
velocity profile with a certain value of n

* We then compute the posterior probability of Da,
marginalising over n=[0.5,50]

 We compare the results with the ACDM prediction
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Number count
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Number count
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Number count
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Uncertainties: DA VS Os
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System 2: RXJ1131-123"1

ZL—O 295

* The power-law mass B -

density slope is p~r=1:99#0.05
* Rer=1.85 arcsec

* Os[averaged over 0.817] =
323 = 20 km/s

* [ime delays: b
Atap =0.7 £ 1.4 days . Suyu et al. (2013)
Atpp =91.4 + 1.5 days =
Atgp =Atagp — Atpg = —90.7 £ 2.1
We will use only AD [for now]




Fractional Uncertainty in Da

Uncertamhes DA VS Os
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Running through Sherry’'s code:
RXJ1131-123"1

e So far, our analysis was simplified: only the
uncertainties in the velocity dispersions were
propagated, and a subset of images were used

 We also assumed spherical lens mass distribution

e |t turns out that the measurement of Da is possible
with a minimal modification to Sherry Suyu’s code
[about which you will hear more about on Thursday]
which was extensively used for determining the
time-delay distances to strong lens systems




Sherry’'s code

Elliptical power-law mass distribution
Use all images and time delays

Marginalized over the power-law index, external
convergence, and velocity anisotropy [with
Osipkov-Merritt form]

Sherry’s code shows that the inferred Da’s are
iIndeed independent of the external convergence
due to a uniform mass sheet!
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Marginalized over n=[0.5,1]
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Marginalized over n=[2.5,5]
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summary

e Strong lenses can be used to measure the angular
diameter distances!

* DaIs independent on the external convergence

* Da Is sensitive to anisotropy In the velocity dispersion,
which must be marginalised over

* The current data (RXJ1131-1231 and B1608+656) can
provide ~15% measurements of Da at z=0.295 and 0.63

* We can reduce the uncertainties in Da by reducing
the uncertainties in the velocity dispersion. E.qg.,
~10% precision is possible by halving Err[os]



Discussion lopics

s it still iInteresting to determine Da accurately up to
zZ~17

How accurately can we determine the velocity
dispersion? [Is 5 km/s possible”]

How accurately can we determine the velocity
profile?

|s there a better way to reduce the uncertainty due
to anisotropic velocity dispersion?



