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Cosmology: Next Decade!

® Astro2010: Astronomy & Astrophysics Decadal Survey

® Report from Cosmology and Fundamental Physics Panel
(Panel Report, Page T-3):

TABLE I Summary of Science Frontiers Panels’ Findings
Panel Science Questions
Cosmology and CFP 1 How Did the Universe Begin?

Fundamental Physics

CFP 2 Why Is the Universe Accelerating?

CFP 3 What Is Dark Matter?

CFP 4 What Are the Properties of Neutrinos?
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Cosmology: Next Decade!
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Large-scale structure of the universe,
has a potential to give us valuable
information on all of these items.

d%W % SN oLwivaIL o

Cosmology and CFP 1 How Did the Universe Begin /Nflation
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What is HETDEX?

® Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX) is a quantum-Ileap galaxy survey:

® The first blind spectroscopic large-scale structure survey

® VVe do not pre-select objects; objects are emission-line
selected; huge discovery potential

® The first 10 Gpc3-class survey at high z [1.9<z<3.5]
® The previous big surveys were all done at z<l|

e High-z surveys barely reached ~102Gpc3 5



Who are we!

® About ~50 people at Univ. of Texas; McDonald
Observatory; LMU; AIP; MPE; Penn State; Gottingen;
Texas A&M; and Oxford

® Principal Investigator: Gary J. Hill (Univ. of Texas)

® Project Scientist: Karl Gebhardt (Univ. of Texas)



Glad to be in Texas

® In many ways, HETDEX is a Texas-style experiment:
® Q.How big is a survey telescope? A. |IOm
® Q.Whose telescope is that? A. Ours

® Q.How many spectra do you take per one
exposure! A. More than 33K spectra — at once

® Q.Are you not wasting lots of fibers? A.Yes we
are, but so what! Besides, this is the only
way you can find anything truly new!



Hobby-Eberly Telescope
Dark Energy Experiment (HETDEX)

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

Q Jar
Fluctuations

1st Stars
about 400 million yrs.

Use 10-m HET to map the universe using

0.8M Lyman-alpha emitting galaxies
In z=1.9-3.5



Many, MANY, spectra

o HETDEX will use the new integral field unit
spectrographs called “VIRUS” (Hill et al.)

® We will build and put 75-96 units (depending on
the funding available) on a focal plane

® FEach unit has two spectrographs
® Each spectrograph has 224 fibers

® Therefore, VIRUS will have 33K to 43K fibers

on a single focal place (Texas size!)
9



HETDEX Foot-print
(in RA-DEC coordinates)
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HETDEX:
A Quantum Leap Su rvey

e+ 2 3% larger volume surveyed

{1 -2 Will survey the previously
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HETDEX vs SDSS
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What do we detect!

® A=350-550nm with the resolving power of R=800 would
give us:

® ~(0.8M Lyman-alpha emitting galaxies at 1.9<z<3.5
e ~2M [OIl] emitting galaxies

® ..and lots of other stuff (like white dwarfs)

15



One way to impress you

® So far,about ~1000 Lyman-alpha emitting galaxies
have been discovered over the last decade

® These are interesting objects — relatively low-mass,
low-dust, star-forming galaxies

® VVe will detect that many Lyman-alpha emitting
galaxies within the first 2 hours of the HETDEX
survey

16



What to measure!

e [nflation

® Shape of the initial power spectrum (ns; dns/dlnk; etc)
® Non-Gaussianity (3pt fnL'o%?; 4pt T, etc)

¢ Dark Energy
® Angular diameter distances over a wide redshift range
® Hubble expansion rates over a wide redshift range

® Growth of linear density fluctuations over a wide
redshift range

® Shape of the matter power spectrum (modified grav) ;



What to measure!

® Neutrino Mass

® Shape of the matter power spectrum

e Dark Matter

® Shape of the matter power spectrum (warm/hot DM)

18



Shape of the Power Spectrum, P(k)
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Primordial
spectrum,

Pprim(k)~kns

Shape of the Power Spectrum, P(k)
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Current Limit on ns

® Limit on the tilt of the power spectrum:

®* Ns=0.96810.012 (68%CL; Komatsu et al. 201 I)
® Precision is dominated by the WMAP 7-year data

® Planck’s CMB data are expected to improve the error
bar by a factor of ~4.

22



Komatsu et al. (201 1)

Probing Inflation (2-point Function)
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Role of the Large-scale
Structure of the Universe

® However, CMB data can’t go much beyond k=0.2 Mpc™!
(1=3000).

® High-z large-scale structure data are required to go
to smaller scales.

24



Shape of the Power Spectrum, P(k)
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Measuring a scale-
dependence of ns(k)

® As far as the value of ns is concerned, CMB is probably
enough.

® However, if we want to measure the scale-dependence of

ns, i.e., deviation of Pprim(k) from a pure power-law, then we
need the small-scale data.

® This is where the large-scale structure data become
quite powerful (Takada, Komatsu & Futamase 2006)

® Schematically:

® dns/dlnk = [ns(CMB) - ng(LSS)]/(Inkcme - InkLss)

26



Probing Inflation (3-point Function)

Can We Rule Out Inflation?

® [nflation models predict that primordial fluctuations are very
close to Gaussian.

® |n fact,ALL SINGLE-FIELD models predict a particular form
of 3-point function to have the amplitude of fn'°<?'=0.02.

® Detection of fne>1 would rule out ALL single-field models!

27



Bispectrum

® Three-point function!

® Br(ki, k> ks)
= <Ck1CiaCk3> = (amplitude) x (217)30(k+ka+k3)F(ki,ka,k3)

T model-dependent function

Primordial fluctuation

28



(a) squeezed triangle (b) elongated triangle (c) folded triangle
(k =k >>k,) (k,=k_+k,) (k, =2k, =2k,)

MOST IMPORTANIT

(d) isosceles triangle (e) equilateral triangle
(k >k =k ) (k =k =k)




Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

e For ANY single-field models’, the bispectrum in the
squeezed limit is given by

® Br(ki~ka<<ks)=(l-ns) x (217)30(k +ka+ks3) x Pr(ki)Pc(ks)

® Therefore, all single-field models predict fne=(5/12)(1—ns).

® With the current limit ns=0.968, fnL is predicted to be 0.01.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 30



Komatsu et al. (201 1)

Probing Inflation (3-point Function)

® No detection of 3-point functions of primordial curvature
perturbations.The 95% CL limit is:

o —|0< fNLlocaI < 74
® The 68% CL limit; fn'oc@ =32 + 21

® The WMAP data are consistent with the prediction of
simple single-field inflation models: | -ns=r~=fnL

® The Planck’s expected 68% CL uncertainty: Afn 0% = 5
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Trispectrum

® Tz;(k|,kz,k3,k4)=(21'l')36(k|+k2+k3+k4)
{gnL[(54/25)P¢(ki)Pr(k2)Pz(ks)+cyc.]
+TNL[Pg(ki)Pg(ka)(Pr(|ki+kas|)+Pe(|ki+ka|)) +cyc ]}




TNLIocaI_fNLIocaI Diagram

|n(TN|_)
3-3X I 04 - 2 (()fll\(])li(ll)-

(Smidt et , L
al. 2010) ® [he current limits

from WMAP 7-year
are consistent with

single-field or multi-
fleld models.

® So, let’s play around
with the future.

74 In(fnu) 33




Case A: Single-field Happiness

In(TNL) ® No detection of

L > (”11“]) anything after

| Planck. Single-field
survived the test
(for the moment:
the future galaxy
surveys can
improve the limits
by a factor of ten).

600

10 In(fni) 34



Case B: Multi-field Happiness

|n(TN|_)

600

30

TNLZ(

» rlocal 2
O /T
5

In(fNL)

® fnL is detected. Single-
field is dead.

® But, TnL is also
detected, in
accordance with multi-

field models:
TNC>0.5(6fnL/5)?
[Sugiyama, Komatsu &

Futamase (201 1)]
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600

Case C: Madness

30

TNLZ(

l

» rlocal \ 2
O /T
5

In(fNL)

® fnL is detected. Single-
field is dead.

® But, TnL is not
detected, inconsistent
with the multi-field
bound.

® (With the caveat that

this bound may not be
completely general)

BOTH the single-field
and multi-field are gone.
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Beyond CMB: Large-scale
Structure!

® |n principle, the large-scale structure of the universe
offers a lot more statistical power, because we can get
3D information. (CMB is 2D, so the number of Fourier

modes is limited.)

37



Beyond CMB: Large-scale
Structure!

® Statistics is great, but the large-scale structure is non-
linear, so perhaps it is less clean!?

® Not necessarily.

38



(a) squeezed triangle (b) elongated triangle (c) folded triangle
(k =k >>k,) (k,=k_+k,) (k, =2k, =2k,)

MOST IMPORTANIT

(d) isosceles triangle (e) equilateral triangle
(k >k =k ) (k =k =k)




Non-linear Gravity

Aquilatera
G
Bm
k. =0.01[h/Mpc]

0.0 0.2 0.4 0.6 0.8 1.0
ky/k

208 | FX¥) (Key, o) Py (Kt 2) P (Ko, 2) + (cyclic)

® For a given kj, vary kz and k3, with k3 <k <k

® F;(ko,ks) vanishes in the squeezed limit, and peaks at the
elongated triangles. 40




Non-linear Galaxy Bias

1.0

0.9
v 2
\N
<" 2 § /7

0.6

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
kS/kl ks/k1 1

bibs [Py, (K1, 2) P (ka, 2) + (cyclic)

® There is no Fa: less suppression at the squeezed, and
less enhancement along the elongated triangles.

PZ

P2
k =0.01[h/Mpc]

k =0.05[h/Mpc]

® Still peaks at the equilateral or elongated forms. * I



Sefusatti & Komatsu (2007); Jeong & Komatsu (2010)

Primordial Non-Gaussianity

N

queezed equilatera
BnG
. folded k'=0.01[h/lf4r;c] :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
k. /k. k,/K
"Po(ky,2) Pk, 2) k2T (k3)
3[)1 fNme 5 |
B2T (k) k2T(ks) D(z)

0.6 0.8

(cyclic)

® This gives the peaks at the squeezed configurations,
clearly distinguishable from other non-linear/

astrophysical effects.
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Bispectrum is powerful

o fnU'o ~ O(1) is quite possible with the bispectrum
method.

® T[his needs to be demonstrated by the real data — we
will certainly do this with the HETDEX data!

43



2dFGRS

O in Galaxy Distribution

_—

® [he acoustic oscillations should be hidden in this galaxy
distribution... .



BAO as a Standard Ruler
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Not Just Da(z)...

® A really nice thing about BAO at a given redshift is that
it can be used to measure not only Da(z), but also the
expansion rate, H(z), directly, at that redshift.

® BAO perpendicular to l.o.s

=> Da(z) = 153Mpc/[(1+2)0]
® BAO parallel to l.o.s

=> H(z) = cAz/153Mpc

46



Transverse=DAa(z); RadlaI—H(z)

SDSS Data Linear Theory
DRB DRB + best model

T
 jusnel WG

100} 100

—100 —-100

—200L
—200 200 —200

Two-point correlation function measured B
from the SDSS Luminous Red Galaxies 0 = 153Mpc/[(1+z)Da(2)]
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Dv(z) = {(1+z)°Da*(z)[cz/H(z)]}'"

Since the current data are not good enough to
constrain Da(z) and H(z) separately,a combination
distance, Dv(Z), has been constrained.

A~
\N/ [ | I | ' I | I | I | | I I | J
> L 4
a - 1
~ N 2dFGRS and SDSS =
9: O r main samples ]
N O [ ]
R @B B SDSS LRG ]
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< 1 F i
ﬁo g s
+ ©Cr 0n=0.278, Qr=0.722
~ B

0 0.2 0.3 0.4

Redshift, z Percival et al. (2010)



Beyond BAO

® BAOs capture only a fraction of the information
contained in the galaxy power spectrum!

® The full usage of the 2-dimensional power spectrum
leads to a substantial improvement in the precision of
distance and expansion rate measurements.
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Shoji, Jeong & Komatsu (2008)

BAO vs Full Modeling

® Full modeling improves upon I kP
the determinations of Da & H 1.0oT ]
by more than a factor of two. 5] .
< 1.007 :
® On the Da-H plane, the size N )
of the ellipse shrinks by more R - Fiiil modeling -

than a factor of four. b 1" T
0'90“:II:::::I|::::|I—I—I—I—
0.95 1.00 1.05 1.10
D /D
A A ref
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Alcock-Paczynski: The Most
Important I'hing For HETDEX

® Where does the improvement 1.0071

come from? s ] SN
{ 1.00 T
® The Alcock-Paczynski test is the key. :: NT

This is the most important component for 0951 il modelin
the success of the HETDEX survey. oo BAO fitting

0.95 1.00 1.05 1.10
D /D
A A ref
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The AP Test: How T hat VWorks

® The key idea: (in the absence of the redshift-space
distortion - we will include this for the full analysis; we ignore
it here for simplicity), the distribution of the power
should be isotropic in Fourier space.
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The AP Test: How T hat VWorks

® DAa:(RA,Dec) to the transverse separation, rperp, to the
transverse wavenumber

® koerp = (2TT)/rperp = (2TT)[Angle on the sky]/Da

® H: redshifts to the parallel separation, rpara, to the
parallel wavenumber

® Koara = (2TT)/Fpara = (2TT)H/(cAZ)

If DA and H are
correct:

kparail—‘ ‘l—‘ J—‘
kpe rp kpe rp kpe 'p

If Da is wrong: |f H is wrong:

53



The AP Test: How T hat VWorks

® DAa:(RA,Dec) to the transverse separation, rperp, to the
transverse wavenumber

® koerp = (2TT)/rperp = (2TT)[Angle on the sky]/Da

® H: redshifts to the parallel separation, rpara, to the
parallel wavenumber

® Koara = (2TT)/Fpara = (2TT)H/(cAZ)

If DA and H are . . If DA and H are
If Da is wrong: |f H is wrong:
correct: wrong:

kpara | | | ‘
Kperp Kperp Kperp Kperp



DaH from the AP test

® So, the AP test can’t be used
to determine Da and H
separately; however, it gives a
measurement of DaH.

® Combining this with the BAO
information, and marginalizing

over the redshift space
distortion, we get the solid
contours in the figure.

1.05 ¢
" : ¥
< 1.00':
T I -
0.95 1 — Full modeling
T BAO fitting
0.90] ——————
0.95 1.00 1.05
D /D
A A ref
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Redshift Space Distortion

® Both the AP test and the redshift space distortion make
the distribution of the power anisotropic.Would it spoil
the utility of this method!?

® Some, but not all!

1 . 1 O B T rrr-rererere T T T T Tt | BENSLINNNE S S m G S m .
| f is fixed. l f is marginalized over. :
I :' :' > :' :. .

0.99[ . Full modeling

[ ” [ e BAO fitting = ]
QQQ 1 | ———— |—|—|—|—|—
0.90 095 1.00 1.05 1.10 0.95 1.00 1.05 1.10

DA/ |:)A,ref DA/ DA,ref




ref

H/H

1.10

1.02

1.00

0.95

0O 90

Marginalized over the amplitude of Pgjaxy(k)

Alcock-Paczynski:

DaR=const. Standard Ruler:

/- Da2/H=const.

D /D
A A ref
0.95 1.00 1.05
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4.5

HETDEX and Neutrino Mass

k / h Mpc

For 10x the number density of HETDEX
f =0.01, 0_=0.27, Q_h*=0.14
N,=1 (m_ =0.13 eV)
N, =2 (mv(i)—O 066 eV)
N, =3 (mv(i)—O 044 eV)

® Neutrinos suppress
the matter power
spectrum on small
scales (k>0.1 h Mpc™).

® A useful number to
remember:

® For > my=0.1 eV, the
power spectrum at
k>0.1 h Mpc' is
suppressed by ~7%.

® \We can measure this

ily!
easily! .



Expected RETDEX L|m|t
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® ~6x better than WMAP 7-year+Ho
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Summary

® Three (out of four) questions:
® What is the physics of inflation!?
® P(k) shape (esp, dn/dlnk) and non-Gaussianity
® What is the nature of dark energy!?
® DAa(z), H(z), srowth of structure
® What is the mass of neutrinos?
® P(k) shape

® HETDEX is a powerful approach for
addressing all of these questions
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