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One of the goals of this presentation is to help you !
understand what this figure is actually showing

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



From “Cosmic Voyage”
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Multi-wavelength measurements  
are necessary to show the black-body  

spectrum of CMB

From Samtleben et al. (2007)





CMB Polarisation

• CMB is [weakly] polarised!
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23 GHz [13 mm]



Stokes Q Stokes U

WMAP Collaboration

33 GHz [9.1 mm]



Stokes Q Stokes U

WMAP Collaboration

41 GHz [7.3 mm]



Stokes Q Stokes U
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61 GHz [4.9 mm]



Stokes Q Stokes U

WMAP Collaboration

94 GHz [3.2 mm]



How many components?

• CMB: Tν ~ ν0 

• Synchrotron: Tν ~ ν–3 

• Dust: Tν ~ ν2 

• Therefore, we need at least 3 frequencies to 
separate them



Seeing polarisation in the 
WMAP data

• Average polarisation 
data around cold and 
hot temperature spots 

• Outside of the Galaxy 
mask [not shown], there 
are 11536 hot spots 
and 11752 cold spots 

• Averaging them beats 
the noise down 



Radial and tangential 
polarisation around 
temperature spots
• This shows polarisation 

generated by the plasma 
flowing into gravitational 
potentials 

• Signatures of the “scalar 
mode” fluctuations in 
polarisation 

• These patterns are called 
“E modes”

WMAP Collaboration



Planck Data!
Planck Collaboration



E and B modes

• Density fluctuations 
[scalar modes] can 
only generate E modes 

• Gravitational waves 
can generate both E 
and B modes

B modeE mode

Seljak & Zaldarriaga (1997); Kamionkowski et al. (1997)



Physics of CMB Polarisation

• Necessary and sufficient conditions for generating 
polarisation in CMB: 

• Thomson scattering 

• Quadrupolar temperature anisotropy around an electron

By Wayne Hu



Origin of Quadrupole

• Scalar perturbations: motion of electrons 
with respect to photons 

• Tensor perturbations: gravitational waves



Key Predictions of Inflation
• Fluctuations we observe today in CMB and 

the matter distribution originate from quantum 
fluctuations generated during inflation 

!

!

• There should also be ultra-long-wavelength 
gravitational waves generated during inflation
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We measure distortions  
in space

• A distance between two points in space 

!

• ζ: “curvature perturbation” (scalar mode) 

• Perturbation to the determinant of the spatial metric 

• hij: “gravitational waves” (tensor mode) 

• Perturbation that does not change the determinant (area)

d`
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Gravitational waves are 
coming toward you!

• What do they do to the distance between particles?



Two GW modes

• Anisotropic stretching of space generates 
quadrupole temperature anisotropy. How?



GW to temperature 
anisotropy

electrons



GW to temperature 
anisotropy
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• Stretching of space -> temperature drops 

• Contraction of space -> temperature rises



Then to polarisation!
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• Polarisation directions are parallel to hot 
regions



propagation direction of GW

h+=cos(kx)

Polarisation directions perpendicular/parallel to the 
wavenumber vector -> E mode polarisation



propagation direction of GW

hx=cos(kx)

Polarisation directions 45 degrees tilted from to the 
wavenumber vector -> B mode polarisation



Important note:
• Definition of h+ and hx depends on coordinates, but 

definition of E- and B-mode polarisation does not 
depend on coordinates 

• Therefore, h+ does not always give E; hx does not 
always give B 

• The important point is that h+ and hx always 
coexist. When a linear combination of h+ and hx 
produces E, another combination produces B



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

if you wish, you could associate !
one pattern with one plane wave… !

BUT



The E-mode polarisation is totally dominated !
by the scalar-mode fluctuations [density waves]

There are E modes in the 
sky as well

BICEP2 CollaborationBICEP2 Collaboration



What is BICEP2?
• A small [26 cm] refractive telescope at South Pole 

• 512 bolometers working at 150 GHz 

• Observed 380 square degrees for three years 
[2010-2012] 

• Previous: BICEP1 at 100 and 150 GHz [2006-2008] 

• On-going: Keck Array = 5 x BICEP2 at 150 GHz 
[2011-2013] and additional detectors at 100 and 
220 GHz [2014-]



How does BICEP2 measure 
polarisation?

• By taking the difference between two detectors 
(A&B), measuring two orthogonal polarisation states

Horizontal slots  
-> A detector

Vertical slots  
    -> B detector

These slots are co-located, so  
they look at approximately 
same positions in the sky 



Is the signal cosmological?

• Worries: 

• Is it from Galactic foreground emission, 
e.g., dust? 

• Is it from imperfections in the 
experiment, e.g., detector mismatches?







Analysis: Two-point 
Correlation Function

θ
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x: 150GHz x 100GHz [BICEP1]
*: 150GHz x 150GHz [BICEP1]

No 100 GHz x 100 GHz [yet]

BICEP2 Collaboration



Can we rule out synchrotron or dust?

• The answer is No

BICEP2 Collaboration



Current Situation
• No strong evidence that the detected signal is not 

cosmological 

• No strong evidence that the detected signal is 
cosmological, either 

!

• Nonetheless, if the detected signal is indeed 
cosmological, what are the implications?



Key Predictions of Inflation
• Fluctuations we observe today in CMB and 

the matter distribution originate from quantum 
fluctuations generated during inflation 

!

!

• There should also be ultra-long-wavelength 
gravitational waves generated during inflation
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Recalling



Tensor-to-scalar Ratio

• The BICEP2 results suggest r~0.2, if we do not 
subtract any foregrounds

r ⌘ hhijhiji
h⇣2i



Quantum fluctuations and 
gravitational waves

• Quantum fluctuations generated during inflation are 
proportional to the Hubble expansion rate during 
inflation, H 

• Simply a consequence of Uncertainty Principle 

• Variance of gravitational waves is then proportional 
to H2:

hhijh
iji / H2



Energy Scale of Inflation

• Then, the Friedmann equation relates H2 to the energy 
density (or potential) of a scalar field driving inflation:

hhijh
iji / H2

H2 =
V (�)

3M2
pl

• The BICEP2 result, r~0.2, implies

V 1/4 = 2⇥ 1016
⇣ r

0.2

⌘1/4
GeV



Has Inflation Occurred?
• We must see [near] scale invariance of the 

gravitational wave power spectrum:

hhij(k)h
ij,⇤(k)i / knt

with

nt = O(10�2)



Inflation, defined
• Necessary and sufficient condition for inflation = sustained 

accelerated expansion in the early universe 

• Expansion rate: H=(da/dt)/a 

• Accelerated expansion: (d2a/dt2)/a = dH/dt + H2 > 0 

• Thus, –(dH/dt)/H2 < 1!

• In other words:  

• The rate of change of H must be slow [nt ~ 0] 

• [and H usually decreases slowly, giving nt < 0]



If BICEP2’s discovery of the primordial 
B-modes is confirmed, what is next?

• Prove inflation by characterising the B-mode power 
spectrum precisely. Specifically: 

• We will find the existence of the predicted 
“reionisation bump” at l<10 

• We will determine the tensor tilt, nt, to the 
precision of a few x 10–2 

• [The exact scale invariance is nt=0]



Lensing limits our ability to 
determine the tensor tilt

If noise is <5uK arcmin, !
lowering noise further !

does not help



Tensor Tilt, nt

• In the best case scenario without de-lensing, the 
uncertainty on nt is Err[nt]~0.03 for r=0.1, which is 
too large to test the single-field consistency relation, 
nt = –r/8 ~ –0.01(r/0.1) 

• De-lensing is crucial!



Without de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



90% de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



Why reionisation bump?

• Measuring the reionisation bump at l<10 would not 
improve the precision of the tensor tilt very much 

• However, it is an important qualitative test of the 
prediction of inflation



Toward precision 
measurement of B-modes

• What experiment can we design to achieve this 
measurement?



LiteBIRD
• Next-generation polarisation-sensitive microwave 

experiment. Target launch date: early 2020 

• Led by Prof. Masashi Hazumi (KEK); a 
collaboration of ~70 scientists in Japan, USA, 
Canada, and Germany 

• Singular goal: measurement of the primordial B-
mode power spectrum with Err[r]=0.001!

• 6 frequency bands between 50 and 320 GHz



LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and 
Inflation from Cosmic Background Radiation Detection

■ 100mK focal plane w/ multi-chroic 
superconducting detector array 

■ 6 bands b/w 50 and 320 GHz

■  Candidate for JAXA’s future missions on “fundamental physics”  
■  Goal: Search for primordial gravitational waves to the lower bound of well-motivated 

inflationary models 
■  Full success: δr < 0.001 (δr is the total uncertainties on tensor-to-scalar ratio, which 

is a fundamental cosmology parameter related to the power of primordial 
gravitational waves)

■Continuously-rotating HWP 
w/ 30 cm diameter 

■ 60 cm primary mirror w/ 
Cross-Dragone 
configuration (4K)

JT/ST + ADR w/ 
heritages of X-ray missions

Major specifications

■Orbit: L2 (Twilight LEO ~600km as an option) 
■Weight: ~1300kg 
■ Power: ~2000W 
■Observing time: > 2 years 
■ Spin rate: ~0.1rpm
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LiteBIRD focal plane design
UC Berkeley  
TES  option

tri-chroic（140/195/280GHz）

tri-chroic（60/78/100GHz）

Tbath = 100mK

Stre
hl ra

tio>0.8

POLARBEAR 
focal plane as 
proof of principle

2022 TES 
bolometers

Band centers can  
be distributed to  
increase the  
effective number  
of bands

More space to place <60GHz detectors

2µKarcmin 
(w/ 2 effective years)



LiteBIRD proposal milestones
• 2012 October - 2014 March  

Feasibility studies & cost estimation with MELCO and NEC 
!

• 2013 April - 2014 April 
Review and recommendation from Science Council of Japan 

!
• late 2014  

White Paper (will be published in Progress of Theoretical and 
Experimental Physics (PTEP) 

!
• 2014 June - December  

Proposal and Mission Definition Review (MDR)  
!

• 2015 ~  
Phase A 



Conclusion
• If the signal detected by BICEP2 is cosmological, we 

are very close to proving that inflation did occur 

• The next goal: unambiguous measurement of the 
primordial B-mode polarisation power spectrum, to 
determine the tensor tilt, nt 

• Err[nt]~0.01 possible only with substantial de-lensing 

• LiteBIRD proposal: a B-mode CMB polarisation 
satellite in early 2020


