Lecture 3

- Cosmological parameter dependence of the
temperature power spectrum

- Polarisation of the CMB

- Gravitational waves and their imprints on the CMB



Planck Collaboration (2016)
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Matching Solutions

e We have a very good analytical solution valid at low and
high frequencies during the radiation era: ¢ = qrs

2 .
sSin gp)
'

0p

T g = (—coscp |

4p-,

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

0
4/?7 - ® = Acos(qrs) + Bsin(qrs) — R®.
P~



Matching Solutions

e We have a very good analytical solution valid at low and
high frequencies during the radiation era: ¢ = qrg

2 .
sSin gp)
'

0p

T g = (—cosgo |

4p-,

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

Slightly improved solution, with a weak time dependence of R using the WKB method
5 [Peebles & Yu (1970)]
P~y

o Te=0+ R) Y%A cos(grs) + Bsin(grs)] — R®
Py




Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

iﬁj -9 = §{3RT (@) — (1+ R)™/“S(a) coslqrs +6(a)] |

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as
q<<gea: S—1, T =1, 6 -0
q>>qea: S—5 T xIng/q? 6 — 0.062m

“EQ” for “matter-radiation Equality epoch”

with geq = aeqHeq ~ 0.01 Mpc-1, giving lea=qgear. ~ 140

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales



Weinberg “Cosmology?”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

i;z & §{3RT(q) — (14 R)"V/48(a) coslars + 0(a)]

where T(q), S(qa), 6(q) are “transfer functions” that smoothly interpolate two limits as

Q<<Qea: S—1, 7T —>1, 6 -0

q>>0gea: |[S—5 T xIng/qg? 6 — 0.0627

EE! - 6 nam o~

ot ~ 140

\:lallel the radiation dominated era  fall



Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

i;: - P = %{3RT (9) — (1 + R)~Y48(q) cos|qrs + e(q_)]}

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as
q<<gea: S—1, 7T —>1, 6 -0
q>>gea: S —5 T xIlng/q? 6 — 0.0627

“EQ” for “matter-radiation Equality epocly?

with geq = aeqHeq ~ 0.01 Mpc-1, qgi

Due to the neutrino
e (*) To a good approximation, the low

given by setting R=0 because sound
Important at large scales

anisotropic stress




Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

igz - P = %{3RT(Q) — (1+ R)~Y48(q) cos|qrs + 9((7_)]}

q -> 0(*) C
>
This should agree with the Sachs-Wolfe result: ®/3; thus,

(I) — —SC / 5 in the matter-dominated era

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales




Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

igz - P = %{3RT(Q) — (1+ R)~Y48(q) cos|qrs + 9((7_)]}

q/qea >> 1 ’ _(1 _I_ R)_1/4<COS[QTS _I_ Q(Q)]

e The amplitude of the oscillation on small scales is a factor
of 5(1 +R)_1/ % times the Sachs-Wolfe plateau!



Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Baryons

")
427 P % (BRT ()| [1+ R)"745(a) coslars + 6(a)
! Shift the zero-point of Reduce the amplitude of
oscillations oscillations

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales
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Effect of baryons

— R,=0.61 [Qzh*=0.022]
Oyh°=0.14
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Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Total Matter

iﬁj -9 = §{3RT (@) — (1+ R)™/“S(a) coslqrs +6(a)] |

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

q<<gea: S—1, T =1, 6 -0
q>>qea: S—5 T xIng/q? 6 — 0.062m

“EQ” for “matter-radiation Equality epoch”

with geq = aeqHeq ~ 0.01 (Quh2/0.14) Mpc-




20 | I I I I I I
[~ ~ Qg=0.005 Mpc™' [Qmh2=0.07]

5L 9Qee=0.010 Mpc™' [Quh*=0.14]

Smaller matter density

-> More potential decay
-> Larger boost

(6p,/4p,+0)°/(¢/5)°

qrs/ﬂ- { ~ 302 x qrg/m



Recap

 Decay of gravitational potentials boosts the temperature
anisotropy dT/T at high multipoles by 5(1+R)-1/4
compared to the Sachs-Wolfe plateau

 Where this boost starts depends on the total matter density

e Baryon density shifts the zero-point of the oscillation, boosting
the odd peaks relative to the even peaks

e However, the WKB factor (1+R)-1/4 and damping make the

boosting of the 3rd and 5th peaks not so
obvious



Not quite there yet...

* The first peak is too low

 \We need to include the “integrated Sachs-Wolfe effect”

e How to fill zeros between the
peaks?

e \We need to include the Doppler shift of light



Doppler Shift of Light

= " I ) A
— - D(tg,, — 7 - tr,,
T, 4}57(&) (tr,nrp)|—n-vp(tn,nrr)

VB is the bulk velocity of

a baryon fluid
* Using the velocity potential,
' A Line-of-sight direction
we write —n - VéuB/a v i
n' = —y
* |n tight coupling, 5“8 — 5’&7 Coming distance (r)
! = R'r
- - o dif
e Using energy conservation, r(t) = /
¢ a(t’)

OUy = (3&2/(]2)8(5,07/4[_),),)/5%



Doppler Shift of Light
AT(n)  dpy(tr,nrr)

TO oy T ) (tr, rp)

VB is the bulk velocity of
a baryon fluid

* Using the velocity potential,
we write —TAL ) vé‘uB/a

* |n tight coupling, 5uB — 5%7

Velocity potential is a

time-derivative

of the energy density:

e Using energy conservation, cos(ars) becomes

Suy = (3a2/q2\0(6p., [4py,) 0t Sniars)



Temperature Anisotropy
from Doppler Shift

q
“0U~N =
P

(14 R)3/4S(k)sin[qrs + 0(r)]

V3¢
5

e TJo this, we should multiply the damping factor

exp(—q%/qa.m)
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Hu & Sugiyama (1996)

(Early) ISW

AT(n)  0T(tp,nrp)

| Qp(tL, ﬁTL) — @(to, O)
dolfe” (ISW) effect

Gravitational potentials still decay after last-scattering because the
Universe then was not completely matter-dominated yet
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— 5000 F 60,/ 4p.,++Doppler =
\'d - -
3 = Op 7'/ 40 4 Early ISW aftects only the [JE
— 4000 3 first peak because it occurs |
(Ej ; after the last-scattering g
N 3000 F N epoch, subtending a larger —
O : \ angle. =
— . | Not only it boosts the first peak, &
+ 2000 F but also it makes it “fatter” |
1000 | =
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We are ready!

AT(n) _ 5p7(tL,TZT’L) @(tL,’fLTL) — N - ’UB(tL;ﬁTL)

1y 45’7(%)
i;ﬂ: P = %{337(,{) — (14 R)~Y48(k) cos|grs + 9(@]}
Q(Su,y — \/SC (14 R)3/*S(k)sin[grs + 0(k)]

a

e \We are ready to understand the effects
of all the cosmological parameters.
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8 OO O | The sound horizon, rs, changes when the baryon density
changes, resulting in a shift in the peak positions.
I Adjusting it makes the physical effect at the last scattering manifest
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I(1+1)C, /27 [uK?]

8000 P Zero-point shift effect -
| compensated by (1+R)-1/4 and
L Silk damping
6OOOE r./r, adjusted -
f Q8h2 -
4000 /I ---0.03 -
75 — 0.022
//.:.' / .\\ @ ...... 0.014
2000 /- S -
| D
o) | ——]
10 100 o000 100012500




I(1+1)C, /27 [uK?]
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Effects of
Relativistic Neutrinos

e To see the effects of relativistic neutrinos, we

artificially increase the number of
neutrino species from 3 to 7

e (reat energy density in neutrinos, i.e., greater energy
density in radiation

1 e Longer radiation domination -> More ISW and boosts
due to potential decay
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(2): Viscosity Effect on the
Amplitude of Sound Waves

The solution is

C =+/(-C+ AA,))? + AB?2
~ (:(1 —I— 4RU/15)_ Hu & Sugiyama (1996)
AB,

tanf = ~ ().00637 Phase shift!

—(C + AA,

Bashinsky & Seljak (2004)
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Bashinsky & Seljak (2004)

(3): Change in the
Silk Damping

Greater neutrino energy density implies greater Hubble

expansion rate, H2=8T[GZpa/3

This FedUCES the sound horizon in proportion to H-1, as rs
~ CSH—1

This also reduces the diffusion length, but in proportional to
H-1/2, as a/qgsik ~ (0theH)1/2  Consequence of the random walk!

As a result, lsik decreases relative to the
first peak position, enhancing the Silk damping
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(4): Viscosity Effect on the
Phase of Sound Waves

The solution is

~ C(]_ —|— 4Ry/15)—1 Hu & Sugiyama (1996)

v Bashinsky & Seljak (2004)
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Two Other Effects

e Spatial curvature

* We have been assuming spatially-flat Universe with zero
curvature (i.e., Euclidean space). What if it is curved?

e Optical depth to Thomson
scattering in a low-redshift Universe

* We have been assuming that the Universe is transparent
to photons since the last scattering at z=1090. What if
there is an extra scattering in a low-redshift Universe?



Spatial Curvature

* It changes the angular diameter distance, da,
to the last scattering surface; namely,

* r.->da=Rsin(r/R) = r.(1=r.2/6R2) + ... for positively-
curved space

* rL->da=Rsinh(r/R) = r.(14r2/6R2) + ... for negatively-
curved space

Smaller angles (larger multipoles) for a

negatively curved Universe
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Optical Depth

e Extra scattering by electrons in a low-redshift Universe
damps temperature anisotropy

e G| -> Cj exp(-2T) at1>~ 10
e where T Is the optical depth
to
T = COT dt N,

t re-ionisation
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Important consequence of
the optical depth

e Since the power spectrum is uniformly suppressed by
exp(-21) at I>~10, we cannot determine the amplitude of

the power spectrum of the gravitational potential, P¢(q),
independently of T.

e Namely, what we constrain is the combination:

exp(—2T)Po(q) o< exp(—27)A,

* Breaking this degeneracy requires an independent
determination of the optical depth. This requires

of the CMB.



Cosmological Parameters Derived from the Power Spectrum

WMAP Planck +CMB Lensing
100025 h2 2.264 + 0.050 2.222 + 0.023 2.226 + 0.023
2ph? 0.1138 £0.0045 0.11974+0.0022 0.1186 % 0.0020
24 0.721+£0.025  0.685+0.013  0.692 4+ 0.012
n 0.972+£0.013  0.9655+0.0062 0.9677 % 0.0060
109 A, 2.203 + 0.067 2.19819-5%9 2.139 4 0.063
T 0.089 £0.014  0.078+0.019  0.066 & 0.016
to[100 Myr] 137.4+1.1 138.13+£0.38  137.99 £ 0.38
H, 70.0 £2.2 67.31 + 0.96 67.81 + 0.92
Q2 h? 0.1364 + 0.0044  0.1426 + 0.0020 0.1415 + 0.0019
10°A,e~27  1.844 +0.031 1.880 +0.014  1.874 + 0.013
03 0.821 +£0.023  0.829+0.014  0.8149 + 0.0093
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e CMB is weakly polarised!




Polarisation

No polarisation




Photo Credit: TALEX
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Necessary and sufficient conditions
for generating polarisation

e You need to have two things to produce linear polarisation
1. Scattering
2. Anisotropic incident light

e However, the Universe does not have a preferred
direction. How do we generate anisotropic incident light?



Need for a local quadrupole
temperature anisotropy

Quadrupole

[t Anisotropy
sotropy

l Thomson Thomson

Scatterine ~ 1 Scattering

Linear

No Polarization oy ds
Wayne Hu Polarization

e How do we create a local temperature quadrupole?



(I,m)=(2,0)

(,m)=(2,2)

Quadrupole
temperature anisotropy

seen from an electron




Quadrupole Generation:
A Punch Line

e \When Thomson scattering is efficient (i.e., tight coupling
between photons and baryons via electrons), the

distribution of photons from the rest frame of baryons is
Isotropic

, a local
quadrupole temperature anisotropy in the rest frame of a
photon-baryon fluid can be generated

* |In fact, “a local temperature anisotropy in the rest frame of
a photon-baryon fluid” is equal to ViSCOSity



Stokes Parameters
[Flat Sky, Cartesian coordinates]




Stokes Parameters

change under coordinate rotation

y
)
Under (x,y) -> (x,y): y | @>0, U=0

x!

(@)_( COS 2 Slﬂ2§0>( OU>0
U —sin2yp cos 2y U



Compact Expression

e Using an imaginary number, write () + tU

Then, under coordinate rotation we have

Q + iU = exp(—2ip)(Q +iU)
Q — iU = exp(2ip)(Q — iU)



Alternative Expression

e With the polarisation amplitude, P, and angle, o« , defined by
P=./Q?+U? U/Q = tan2a

We write

Q + iU = Pexp(2ia)

Then, under coordinate rotation we have

and P is invariant under rotation



E and B decomposition

e That Q and U depend on coordinates is not very
convenient...

e Someone said, “| measured Q!” but then someone else
may say, “No, it’s U!”. They flight to death, only to
realise that their coordinates are 45 degrees rotated
from one another...

e The best way to avoid this unfortunate fight is to define a
coordinate-independent quantity for the distribution of

polarisation patterns in the sky

To achieve this, we need

to go to Fourier space



n = (sin 6 cos ¢, sin # sin ¢, cos 0)

“Flat sky”,
If © is small




Fourier-transforming
Stokes Parameters?

d*/
(27)

where

¢ = (£ cos ¢y, £sin ¢y)

ag exp(il - )

Q) +iv )~ |

* As Q+iU changes under rotation, the Fourier coefficients Qg
change as well

e So...



(*) Nevermind the overall minus sign. This is just for convention

Tweaking Fourier Transform

d*/
(27)

where we write the coefficients as(*)

ap = —oap €xXp(2i¢y)

 Under rotation, the azimuthal angle of a Fourier
wavevector, ¢, changes as by — ¢ 0 = oy —

ag exp(if - )

Q) +iv©) — |

* This CANCEIS the factor in the left hand side:
Q + iU = exp(—2ip)(Q + iU)



Seljak (1997); Zaldarriaga & Seljak (1997); Kamionkowski, Kosowky, Stebbins (1997)

Tweaking Fourier Transform

e \We thus write

Q) xive) = | (%2 |

-20¢ eXp(:

oAy — (Eg T ZBg)

* And, defining -

Q(6) +iU(0) =

-210p + 14 - 9)

- 1Bp) exp(£2igy + 14 - 0)

By construction E; and Bido not pick up a factor
of exp(2i}) under coordinate rotation. That’s

great! What kind of polarisation patterns do

these quantities represent?



Pure E, B Modes

e Qand U produced by E and B modes are given by

d*/
Q(B) — (2 )2 (Ee COS 2(;5;; — Bg sin 2(,7')(,3) exp(jg : 9)
v
2 o | |
U(O) — (2 )2 (Ee S111 QC,Dg -1- Bg COS QQDE) exp(zﬁ - 9)
. )=

e Let’s consider Q and U that are produced by a single
Fourier mode

e TJaking the x-axis to be the direction of a wavevector, we

obtain Q(()) = Fy exp(iw)
U(0) = By exp(il0)



Pure E B Modes

.2 E mode

4.4:

t

¢
///\\\\\// |

jf_ B mode

o Taklng the x-axis to be the direction of a wavevector, we

obtain Q(Q) = Fy exp(ifg)
U(0) = By exp(il0)



Geometrlc Meanlng (1)

* E mode: Polarisation directions parallel or
perpendicular to the wavevector

* B mode: polarisation directions 45 degree tilted

with respect to the wavevector



Geometric Meaning (2)

e E mode: stokes Q, defined with respect to £ as the x-axis

e B mode: stokes U, defined with respect to £ as the y-axis

IMPORTANT: These are all coordinate-independent statements




e E mode: Parity even

e B mode: Parity odd




e E mode: Parity even

e B mode: Parity odd




Power Spectra
(EeEy) = (2m)26p (£ — £)CFF
(BeBy) = (2m)%6 (£ — £)CFPP

(TeEp) = (Tf Ey) = (27)%0) (£ — £)CFE

* However, for parity-

preserving fluctuations because <EB> and <TB> change
sign under parity flip
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Temperature
¢ from sound waves

— 1 We understand this
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Temperature
from sound waves

We understand this

E-mode

from sound waves

1 OW P %

r=0.05

" B- qde from GW

B-mode from lensing

Planck e
BICEP2 /Keck O
SPTPol *
POLARBEAR A
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The Single Most Important
Thing You Need to Remember

e Polarisationis generated by the local
quadrupole temperature anisotropy,
which is proportional to ViSCOSity



(I,m)=(2,0)

(,m)=(2,2)

Local quadrupole
temperature anisotropy

seen from an electron




(I,m)=(2,0)




(I,m)=(2,0) (I,m)=(2,1)

Polarisation pattern you will see



Polarisation pattern in the sky
generated by a single Fourier mode




Polarisation pattern in the sky
generated by a single Fourier mode




E-mode Power Spectrum

e Viscosity at the last-scattering surface is given by the
spatial gradient of the velocity:

ATij — az&;@ 5 7Ty

02 Py g 9;6u,
45 07N

* Velocity potential is Sln(q r|_), whereas the temperature
power spectrum is predominantly COS(C{ rl_)



Bennett et al. (2013)

WMAP 9-year Power Spectrum
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Planck Collaboration (2016)

Planck 29-mo Power Spectrum
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South Pole Telescope Collaboration (2018)

SPTPol Power Spectrum
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" Tj\ E is created by viscosity

Planck e

BICEP2 /Keck O

SPTPol ¥

POLARBEAR A

o500
|

1000

15002000

[1] Trough In T
-> Peak In E

because CTT ~ cos2(qrs)
whereas CiEE ~ sin2(qrs)

[2] T damps
-> E rises

because
T damps by viscosity,
whereas

[3] E Peaks
are sharper

because C/TT is the sum of
cos2(grL) and Doppler
shift’s sin2(qrL), whereas
CiEE is just sin2(gr.)



10*

[1] Trough In T
-> Peak In E

l because CTT ~ cos2(qrs)
1021 | whereas CEE ~ sin2(grs)

o m‘s;%i [2] T damps

*@‘?‘;{*% ] -
* => Erises
- because
T damps by viscosity,
Lo $ % whereas
L \\ E is created by viscosity
1 [3] E Peaks

Planck e
BICEP2 /Keck O are Sharper
SPTPol ¥ | | because C/T is the sum of
POLARBEAR A cos2(qr.) and Doppler

| | | | shift’s sin2(gr.), whereas

100 500 1000 15002000 CiEE is just sin%(qr)
|




Polarisation from
Re-1onisation
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Polarisation from
Re-1onisation

CiEE ~ AST2

= A exp(—27)7% exp(27
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Cross-correlation between
T and E

* Velocity potential is Sln(q r|_), whereas the temperature
power spectrum is predominantly COS(C{ rl_)

* Thus, the TE correlation is Sln(q rL)Cos(q rL) which

can change sign
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Bennett et al. (2013)

WMAP 9 year Power Spectrum
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Planck Collaboration (2016)

Planck 29-mo Power Spectrum
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South Pole Telescope Collaboration (2018)

SPTPoI Power Spectrum
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TE correlation i1s useful for
understanding physics

e T roughly traces gravitational potential, while E traces
velocity 5

"y X —q“0u, x V - vp

e With TE, we withess how plasma falls into gravitational
potential wells!



Coulson et al. (1994)

Example:
Gravitational Effects

Gravitational
Potential, (D

cc»e-ce@-e-

Plasma motion

V- ’UB>O
V. -vg <0

q°my X —q*0u, x V - vp

(\ i"?-'"



Gravitational Waves

 GW changes the distances between two points

d? = dx* =) 6;;da’da’
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| |GO detected GW from binary
blackholes, with the wavelength
of thousands of kilometres

But, the primordial GW affecting
the CMB has a wavelength of
billions of light-years!! How

do we find it?



Detecting GW by CMB

|sotropic electro-magnetic fields



Detecting GW by CMB

GW propagating in isotropic electro-magnetic fields



Detecting GW by CMB

Space is stretched => Wavelength of light is also stretched




AT ()

Generation and erasure
of tensor quadrupole (viscosity)

e (ravitational waves create quadrupole temperature

anisotropy [i.e., T€NSOr ViSCOSity of a photon-

baryon fluid] gravitationally, without velocity potential

o Still, tight-coupling between photons and baryons erases
the tensor viscosity exponentially before the last
scattering

to
= —— dt DZ t,nr XV
Ty Jisw Z p it

negllglble contribution before the last scattering




Propagation of cosmological
gravitational waves

ee 3& - 1 _t
D ' D v D 6 G ensor
,2: L J I ’?I/ . 2 7./ . 1 ’i . ;I o s
J a J (1,2 ‘ “J

* Jensor anisotropic stress can do two things:
* |t can generate gravitational waves

e |t can damp gravitational waves (neutrino anisotropic

stress)
But we shall ignore the tensor

anisotropic stress for this lecture



Super-horizon Solution

) 3 .
Dij+ = Di; =0

» D;; = constant + decaying term

e Super-horizon tensor perturbation is conserved! [Remember
( for the scalar perturbation]

* Thus, no ISW temperature anisotropy on super-horizon
scales

* |t does not look like “gravitational waves”, but it will start
oscillating and behaving like waves once it enters the horizon



n. “conformal time”, or the distance traveled by photons

Matter-dominated Solution

371(qn) 1

Dij,CI(t) — C’ijaq qn X a(t)
. o q 3j20qm) 1
Pijalt) = ~Cijq oty a=(t)

e dDj/at gives the ISW. It peaks at the horizon crossing, qn~2

* The energy density is given by (dD;/at)2, which indeed
decays like radiation, a4
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Scale-invariant

Temperature Ci from GW

100.00

" 10.00 E

1.00

0.10 E

0.01L
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simply to redshifts

This is NOT a Silk-
like damping!

It’s not
exponential, but a
power-law due
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Detecting GW by CMB

Polarisation
Space is stretched => Wavelength of light is also stretched
.
o
hot ¢
.
electron &

3




Detecting GW by CMB
Polarisation

Space is stretched => Wavelength of light is also stretched




(I,m)=(2,0)

(,m)=(2,2)

Local quadrupole
temperature anisotropy

seen from an electron




(1,m)=(2,0)

(I,m)=(2,2)

o
o“,
."
.

‘Let’s symbolise
7 e e 07 (Lm)=(2,2) as
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e E and B modes are produced nearly equally, but on small
scales B is smaller than E because B vanishes on the horizon
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e E and B modes are produced nearly equally, but on small
scales B is smaller than E because B vanishes on the horizon
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0.100

This damping is
actually due to
the “Fuzziness”
" damping from the
finite extent of the
last-scattering
surface
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e E and B modes are produced nearly equally, but on small
scales B is smaller than E because B vanishes on the horizon
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Temperature
¢ from sound waves

We understand this

E-mode
from sound waves

We understand this /
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B-mode from lensing
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from sound waves !
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We understand this /’
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Enjoy starting at these
power spectra, and
being able to explain all

the features in them!
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