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How do “see” beyond the surface of last scattering?



23 Youlube - horizon edge of the visible universe
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The Royal Swedish Academy of Sciences has deaded fo award
the 2019 Nobel Prize in Physncs to '

JAN\ES PEEBLES

“for ’rheorehcal discoveries in physncal cosmology

. Sound waves Iin the
fireball Universe,
Facts predicted in 1970
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Sound waves in the early Universe

Detected in 1999-2000, 30 years after the prediction!
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| = 180 degrees/(angl€ in the sky)

* A beautiful example of the

success of theoretical physics!

The power spectrum is a
powerful tool to see the sound
waves. What Is the power
spectrum?

Decompose fluctuations in the
sky into a set of cosine and
sine waves, and plot the
amplitude of waves as a
function of the (inverse) of the
wavelength.



Power spectrum, explained
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Determine the composition
of the Universe

The Universe as a “hot soup”

 [he power spectrum allows us to
determine the composition of the
Universe, such as the density of
atoms, dark matter, and dark

energy.

* Definitive evidence for non-
baryonic nature of dark matter!
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“Let’s give some impact to the beginning of this model”
Did you hear that?

 What gave the initial fluctuation to the cosmic hot soup?

Mukhanov & Chibisov (1981); Hawking (1982); Starobinsky (1982); Guth & Pi (1982);
Bardeen, Turner & Steinhardt (1983)

Leading ldea:

« Quantum mechanics at work in the early Universe

e “We all came from quantum fluctuations”

 But, how did the guantum fluctuation on the microscopic scale become
macroscopic over large distances?

* What is the missing link between the small and large scales?



Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

The Hubble radius during inflation, c/H
Quantum mechanical fluctuation
on microscopic scales

—Xponential d
-xpansion!

_— T

e Exponential expansion (inflation) stretches the wavelength of
quantum fluctuations to cospological scales




Finding Cosmic Inflation

What does inflation predict?

* The distance between two points is stretched as L ~ a(t), where a(t) is the
scale factor.

 The Hubble expansion rate is defined as H(t) = din(a)/dt. This has the units
of [1/time].

* The scale factor is then given by a(t) = exp[ [H(t)dt ].

* During inflation, the distance between two points expands exponentially.
This means H(t) ~ constant, which gives a(t) ~ exp(Ht).

 However, inflation must end. This means that H(t) is a slowly decreasing
function of time.

How can we test this?



Mukhanov & Chibisov (1981); Hawking (1982); Starobinsky (1982); Guth & Pi (1982);
Bardeen, Turner & Steinhardt (1983)

Finding Cosmic Inflation

What does inflation predict for the scalar (density) fluctuation?

* During inflation, the density fluctuation is produced quantum mechanically.

* Heisenberg’s uncertainty principle tells you:

e [energy you can borrow] ~ [time you borrow]-1 ~ H

« THE KEY: The earlier the fluctuations are generated, the more its wavelength
Is stretched, and thus the bigger the angles they subtend in the sky. Because
H(t) is a decreasing function of time, inflation predicts that the amplitude
of fluctuations on large angular scales is slightly larger than that on small

angular scales!
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves

WMAP Collaboration
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Amplitude of Waves
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2001-28 WMAP Collaboration

South Pole Telescope
R is [10-m in South Pole]

II First ~50 discovery of ns<lI
from the CMB data combined
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Amplitude of Waves
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Fraction of the Number of Pixels
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Quantum Fluctuations
give a (Gaussian
distribution of
lemperatures.

Do we see this
in the WMAP data”
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Fraction of the Number of Pixels
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So, have we found inflation?

A lot of evidence In support of inflation exist already.

» Single-field slow-roll inflation looks very good:
v * ns<1
v/« Gaussian fluctuations
v/« Adiabatic fluctuations [no time to explain this today]
v+ Super-horizon fluctuations [no time to explain this today]
 What more do we want”? Primordial gravitational waves

 Why more evidence? Because “extraordinary claim requires extraordinary
evidence” (Carl Sagan)

28



The New Quest:
Primordial Gravitational Waves

Grishchuk (1974); Starobinsky (1979)




Gravitational waves are coming towards you!
To visualise the waves, watch motion of test particles.



Gravitational waves are coming towards you!
To visualise the waves, watch motion of test particles.




Distance between two points

e |n Cartesian coordinates, the distance between two points In
Euclidean space is

ds® = dx* + dy® + dz-

* Jo Include the isotropic expansion of space,

ds* =|a®(t)|(dz* + dy* + dz*)

X



Distortion In space

 Compact notation using Krcneckers delta symbol:

ds* = a*(t) 5 25 dx'dax?

=1 7= x = (z,y,2)
6” =1 for | |—j
Oij = 0 otherwise

x2

* o Include distortion In space

0> Z z (8i5 +|his) dec’ dac?

1=19=1

) & Distortion in space!



Four conditions for gravitational waves

 The gravitational wave shall be transverse.

* The direction of distortion is perpendicular to the propagation direction —

2SS £

3 ® 3 /. 3
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IV 3 conditions for h;




Four conditions for gravitational waves

 The gravitational wave shall not change the area

* The determinant of §;+hjj is 1

3 3 . .
d82 — a? Z Z (57,3 —+ hf,;j)daizdaij
i=14=1

3
Thus, Y hi=0 1 condition for hj
i—1 5




6 - 4 = 2 degrees of freedom for GW

We call them “plus” and “cross” modes

 The symmetric matrix hjjhas 6 components, but there are 4 conditions. Thus, we
have two degrees of freedom.

* |f the GW propagates in the x3=z axis, non-vanishing components of hj are

h_|_ hx O
0 0 0

36



Z

\®
Y

°

e

7
o

\@
Y

°

—

Propagation direction of GW k

o ®
v @ ¢

NCNCIN




How to detect GW?

Laser interferometer technique, used by LIGO and VIRGO

Mirror

o ® o
i Beam splitter ¢
| 7 .

: Mirror -
:\ ¢ ¢
o o ©

_ el NoSignal
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' Mirror

The wavelength of GW detectable by
this method is the size of Earth
' (a few thousand km).
How do we detect GW with
billions of light-years’s wavelength?

Beam splitter Py ®



Sachs & Wolfe (1967)

Detecting GW by CMB

Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

C

Isotropic radiation field (CMB)

h




Sachs & Wolfe (1967)

Detecting GW by CMB

Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB) Isotropic radiation field (CMB)

SR | :

Electron




Polnarev (1985)

Detecting GW by CMB ~olarisation

Quadrupole temperature anisotropy scattered by an electron

Isotropic radiation field (CMB)

Q o
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Isotropic radiation field (CMB)

Electron



Credit: TALEX
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Physics of CMB Polarisation

Necessary and sufficient condition: Scattering and Quadrupole Anisotropy

Quadrupole
Anisotropy
Isotropy
1 Y
1 ~
Thomson Thom.spn
) g > Scattering . > Scattering
Linear
No Polarization Polarization

Credit : Wayne Hu "




Credit: ESA

Temperature (smoothed)
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Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky & Stebbins (1997)

E- and B-mode decomposition

Concept deflned |n Fourler space

Emode
| -1 L
/ | Direction of the Fourier
| wavenumber vector
/ VRN \ NN
*% B mode

* E-mode : Polarisation directions are parallel or perpendicular to the wavenumber direction

 B-mode : Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction
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Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky & Stebbins (1997)

Parity Flip

E- mode remalns the same, whereas B-mode changes the sign

' Emode | » Two-point correlation functions invariant
! L o | under the parity flip are

| 0 ' 25(2) NCOEE
_ EoE, ) = (2m)°05 (£ — £€)C
///\\\\\// | \Bebrg) = (2m)°0p " )
= m e ———————————————————————— <B £ B z’ > — (27T) : 5g) (’e o ‘e,)CEB B

sbom 3 |

- - (TeE}) = (T} Ee) = (27)26') (6 — e CFE

:.f * The other combinations <TB> and <EB> are not

"~ / VAVEEN \ invariant under the parity flip.

 We can use these combinations to probe

¥
f )
“l S
¥
.

_sbom4 | parity-violating physics (e.g., axions)

48



Power Spectra
Where are we? What is next?

E!
» The temperature and polarisation §
power spectra originating from the g
scalar (density) fluctuation have =
been measured. =

i

 The next quest: B-mode power
spectrum from the primordial GW!

B-mode

(Primordial GW)

10*
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10°

1077

107%
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Experimental Landscape



Advanced Atacama South Pole Telescope “3G” “
Cosmology ope ' S Nk

",“ "'. ! ¥ {

On-going Ground-based
Experiments

BICEP/Keck Array CLASS

The Simons Array




Advanced Atacama
Cosmology ope

"SIMONS

OBSERVATORY

The Simons Array
BICEP/Keck Array

Early 2020s

~$100M




Bringing all together:
CMB Stage IV
Late 2020s (~$600M
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CMB-S4 CMB Stages

Next Generation CMB Experiment

I I I —I Space based expelriments
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Summary

Towards finding primordial gravitational waves

 The Quest So Far: Single-field slow-roll inflation looks very good.

 We have a lot of evidence for inflation, including ns<1, Gaussiainity,
adiabaticity, and super-horizon fluctuations

e The New Quest: B-mode Polarisation from Primordial Gravitational Waves!

* Discovery of the primordial GW gives definitive evidence for inflation.

 Hoping to find the first evidence from ground-based experiments within the
next 10 years

* Then, the definitive measurement will come from LiteBIRD in early 2030s!
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