# Cosmology in the Next Decade

Eiichiro Komatsu Texas Cosmology Center, University of Texas at Austin JGRG, September 28, 2011

# Cosmology: Next Decade?

- Astro2010: Astronomy & Astrophysics Decadal Survey
  - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3):

TABLE I Summary of Science Frontiers Panels' Findings

Panel

| Cosmology and       | CFP 1 | Н |
|---------------------|-------|---|
| Fundamental Physics | CFP 2 | v |

- CFP 3 What Is Dark Matter?
- CFP 4 What Are the Properties of Neutrinos?

Science Questions

- Iow Did the Universe Begin?
- Why Is the Universe Accelerating?

# Cosmology: Next Decade?

- Astro2010:Astronomy & Astrophysics Decadal Survey
  - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3): Translation

TABLE I Summary of Science Frontiers Panels' Findings

Panel

| Cosmology and       | CFP 1 | Η |
|---------------------|-------|---|
| Fundamental Physics | CFP 2 | v |

- Dark Matter What Is Dark Matter? CFP 3
- What Are the Properties of N Neutrino Mass CFP 4

Science Questions

- Iow Did the Universe Begin Inflation
- Why Is the Universe Acceler: Dark Energy

## Cosmology Update: WMAP 7-year+

## • Standard Model

- H&He = 4.58% (±0.16%)
- Dark Matter = 22.9% (±1.5%)
- Dark Energy = 72.5% (±1.6%)
- H<sub>0</sub>=70.2±1.4 km/s/Mpc
- Age of the Universe = 13.76 billion years (±0.11 billion years)

## **Universal Stats**

Age of the universe today 13.75 billion years

Age of the cosmos at time of reionization 457 million years



## "ScienceNews" article on the WMAP 7-year results

# Can we prove/falsify inflation\*?

\* A period of rapidly accelerating phase of the early universe.

## What does inflation do?

- Inflation can:
  - Make 3d geometry of the observable universe flatter than that imposed by the initial condition
  - Produce scalar quantum fluctuations which can seed the observed structures, with a nearly scale-invariant spatial spectrum
  - Produce tensor quantum fluctuations which can be observed in the form of primordial gravitational waves, with a nearly scale-invariant spectrum

# Stretching Micro to Macro $H^{-1}$ = Hubble Size Quantum fluctuations on microscopic scales **IFLATION!** δω Quantum fluctuations cease to be quantum, and become observable

## And, they look like these

## In Photon

## In Matter

8

## Inflation produces: • Curvature perturbation, $\zeta$ .

For the metic of

 $ds^{2} = -[1 + 2\Psi(t, \vec{x})]dt^{2} + a^{2}(t)[1 + 2\Phi(t, \vec{x})]d\vec{x} \cdot d\vec{x}$ 

- We define
  - $\zeta = \Phi H\delta \phi / (d\phi/dt)$
- It is "curvature perturbation" because it has  $\Phi$  in it.
  - $\zeta$  is a gauge-invariant quantity. It is precisely the curvature perturbation in the so-called "comoving"

gauge" in which  $\delta \phi$  vanishes (for a single-field model) <sup>9</sup>

# And $\zeta$ produces:

• Temperature anisotropy (on very large scales):

## • $\delta T/T = -(I/5)\zeta$ [Sachs-Wolfe Effect]

• Density fluctuation (on very large scales):

## • $\delta = -\Delta \zeta / (4\pi Ga^2 \rho)$ [Poisson Equation]

• Therefore, the statistical properties of the observed quantities such as the temperature anisotropy of the cosmic microwave background and the density fluctuations of matter distribution tell us something about inflation!

## Inflation also produces:

- Tensor perturbations,  $h_{ij}^{TT}$ .
- For the metic of

 $ds^{2} = -dt^{2} + a^{2}(t) \left[\delta_{ii} + h_{ii}^{TT}\right] dx^{i} dx^{j}$ 

• For a tensor perturbation (gravitational waves) propagating in z direction (in the so-called transverse&traceless gauge),

•  $h_{+} = h_{11}^{TT} = h_{22}^{TT}$  ["+" mode]

•  $h_x = h_{12}^{TT} = h_{21}^{TT}$  ["x" mode]

# Scalar Perturbations (Density Fluctuations)

# Power Spectrum of $\zeta$

- A very successful explanation (Mukhanov & Chibisov; Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner) is:
  - Primordial fluctuations were generated by quantum fluctuations of the scalar field that drove inflation.
  - The prediction: a nearly scale-invariant power spectrum in the curvature perturbation:
    - $P_{\zeta}(k) = \langle |\zeta_k|^2 \rangle = A/k^{4-ns} \sim A/k^3$ 
      - where  $n_s \sim I$  and A is a normalization.





Multipole Moment (1)



## Inflation Predicts:



16

## Inflation may do this



17

## ...or this



WMAP 7-year Measurement (Komatsu et al. 2011)



19

# Tensor Perturbations (Gravitational Waves)

# Gravitational waves are coming toward you...What do you do? • Gravitational waves stretch space, causing particles to move.

## Physics of CMB Polarization



• CMB Polarization is created by a local temperature **quadrupole** anisotropy.

## Principle



## • Polarization direction is parallel to "hot."



## Two Polarization States of GW

 This is great - this will automatically generate quadrupolar temperature anisotropy around electrons!

# • "X" Mode

## From GW to CMB Polarization

# Electron



## From GW to CMB Polarization





## From GW to CMB Polarization





# "Tensor-to-scalar Ratio," r $2\langle |h_{\mathbf{k}}^{+}|^{2} + |h_{\mathbf{k}}^{\times}|^{2} \rangle$ $\langle |\mathcal{L}_{\mathbf{k}}|^2 \rangle$ In terms of the slow-roll parameter:

r = 168

where  $\epsilon = -(dH/dt)/H^2 = 4\pi G (d\phi/dt)^2/H^2 \approx (16\pi G)^{-1} (dV/d\phi)^2/V^2$ 

Polarization Power Spectrum



 No detection of polarization from gravitational waves (B-mode polarization) yet.



## **Proof: A Punch Line**

• Detection of the primordial gravitational wave (i.e., the tensor-to-scalar ratio, "r") with the expected shape of the spectrum provides an unambiguous proof that inflation did occur in the early universe!

## How can we falsify inflation?

# How can we falsify **single-field** inflation?

## Single Field = Adiabatic fluctuations

- Single-field inflation = One degree of freedom.
  - Matter and radiation fluctuations originate from a single source.

$$\mathcal{S}_{c,\gamma} \equiv \frac{\delta \rho_c}{\rho_c}$$

Cold Dark Matter

\* A factor of 3/4 comes from the fact that, in thermal equilibrium,  $\rho_c \sim (1+z)^3$  and  $\rho_V \sim (1+z)^4$ .

$$\frac{3\delta\rho_{\gamma}}{4\rho_{\nu}} = 0$$

Photon

34

Adiabatic (========) Pm

 $\times$ 



## Non-adiabatic Fluctuations

 Detection of non-adiabatic fluctuations immediately rule out single-field inflation models.

- The data are consistent with adiabatic fluctuations:
  - $\frac{|\delta\rho_c/\rho_c 3\delta\rho_{\gamma}|}{\frac{1}{2}[\delta\rho_c/\rho_c + 3\delta\rho_{\gamma}]}$

## Komatsu et al. (2011)

$$\frac{4\rho_{\gamma}}{(4\rho_{\gamma})]} < 0.09$$
 (95% CL)
### Inflation looks good (in 2-point function)



 Joint constraint on the primordial tilt, n<sub>s</sub>, and the tensor-to-scalar ratio, r.

### r < 0.24 (95%CL;</li> WMAP7+BAO+H<sub>0</sub>)

### Bispectrum

- Three-point function!
- $B_{\zeta}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)$ =  $\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle$  = (amplitude) x (2 $\pi$ )<sup>3</sup> $\delta(k_1 + k_2 + k_3)b(k_1, k_2, k_3)$



### model-dependent function

## Single Field Theorem

### = Negligible "Local-form" Three-point Function





### **MOST IMPORTANT**

















 The one-point distribution of WMAP map looks pretty Gaussian.

-Left to right: Q (41GHz), V (61GHz), W (94GHz). Deviation from Gaussianity is small, if any.

# Spergel et al. (2008)

### Inflation Likes This Result

- According to inflation (Mukhanov & Chibisov; Guth & Yi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner), CMB anisotropy was created from quantum fluctuations of a scalar field in Bunch-Davies vacuum during inflation
- Successful inflation (with the expansion factor more than e<sup>60</sup>) demands the scalar field be almost interaction-free
- The wave function of free fields in the ground state is a Gaussian!

### But, Not Exactly Gaussian

- Of course, there are always corrections to the simplest statement like this.
- For one, inflaton field **does** have interactions. They are simply weak – they are suppressed by the so-called slow-roll parameter,  $\varepsilon \sim O(0.01)$ , relative to the free-field action.

## A Non-linear Correction to Temperature Anisotropy

- The CMB temperature anisotropy,  $\Delta T/T$ , is given by the curvature perturbation in the matter-dominated era,  $\Phi$ .
  - For the Schwarzschild metric,  $\Phi = +GM/R$ .
- One large scales (the Sachs-Wolfe limit),  $\Delta T/T = -\Phi/3$ . • Add a non-linear correction to  $\Phi$ :
  - $\Phi(\mathbf{x}) = \Phi_g(\mathbf{x}) + f_{NL}[\Phi_g(\mathbf{x})]^2$  (Komatsu & Spergel 2001)
  - f<sub>NL</sub> was predicted to be small (~0.01) for slow-roll models (Salopek & Bond 1990; Gangui et al. 1994)

### f<sub>NL</sub>: Form of Βζ

•  $\Phi$  is related to the primordial curvature perturbation,  $\zeta$ , as  $\Phi = (3/5)\zeta$ .

•  $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2$ 

•  $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times [P_{\zeta}(k_1) P_{\zeta}(k_2) + P_{\zeta}(k_2) P_{\zeta}(k_3) + P_{\zeta}(k_3) P_{\zeta}(k_1)]$ 

## f<sub>NL</sub>: Shape of Triangle

- For a scale-invariant spectrum,  $P_{\zeta}(k) = A/k^3$ ,
  - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6A^2/5)f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$  $x [1/(k_1k_2)^3 + 1/(k_2k_3)^3 + 1/(k_3k_1)^3]$
- Let's order  $k_i$  such that  $k_3 \le k_2 \le k_1$ . For a given  $k_1$ , one finds the largest bispectrum when the smallest k, i.e., k<sub>3</sub>, is very small.
  - $B_{\zeta}(k_1,k_2,k_3)$  peaks when  $k_3 << k_2 \sim k_1$
  - Therefore, the shape of  $f_{NL}$  bispectrum is the squeezed triangle! k<sub>2</sub> k<sub>3</sub> (Babich et al. 2004)



### $B_{\zeta}$ in the Squeezed Limit

### • In the squeezed limit, the $f_{NL}$ bispectrum becomes: B<sub> $\zeta$ </sub> $(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (12/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$

### Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models<sup>\*</sup>, the bispectrum in the squeezed limit is given by
  - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (|-n_s|) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
  - Therefore, all single-field models predict  $f_{NL} \approx (5/12)(1-n_s)$ .
  - With the current limit  $n_s=0.96$ ,  $f_{NL}$  is predicted to be 0.017.

\* for which the single field is solely responsible for driving inflation and generating observed fluctuations.

49

### Understanding the Theorem

• First, the squeezed triangle correlates one very longwavelength mode,  $k_L$  (= $k_3$ ), to two shorter wavelength modes,  $k_s$  (= $k_1 \approx k_2$ ):

• 
$$<\zeta_{\mathbf{k}} \zeta_{\mathbf{k}} \zeta_{\mathbf{k}} \zeta_{\mathbf{k}} > \approx <(\zeta_{\mathbf{k}})^2 \zeta_{\mathbf{k}}$$

- Then, the question is: "why should  $(\zeta_{\mathbf{k}S})^2$  ever care about  $\zeta_{\mathbf{k}L}$ ?"
  - The theorem says, "it doesn't care, if  $\zeta_k$  is exactly scale invariant."

**k**∟>

## Gkl rescales coordinates

- The long-wavelength curvature perturbation rescales the spatial coordinates (or changes the expansion factor) within a given Hubble patch:
  - $ds^2 = -dt^2 + [a(t)]^2 e^{2\zeta} (d\mathbf{x})^2$

left the horizon already

Separated by more than H<sup>-1</sup>



## Gkl rescales coordinates

- Now, let's put small-scale perturbations in.
- Q. How would the conformal rescaling of coordinates change the amplitude of the small-scale perturbation?



Separated by more than H<sup>-1</sup>



## $\zeta_{kL}$ rescales coordinates

- Q. How would the conformal rescaling of coordinates change the amplitude of the small-scale perturbation?
- A. No change, if ζ<sub>k</sub> is scaleinvariant. In this case, no correlation between ζ<sub>k</sub> and (ζ<sub>k</sub>s)<sup>2</sup> would arise.

left the horizon already

Separated by more than H<sup>-1</sup>



### Creminelli & Zaldarriaga (2004); Cheung et al. (2008) Real-space Proof The 2-point correlation function of short-wavelength modes, $\xi = \langle \zeta_{s}(\mathbf{x}) \zeta_{s}(\mathbf{y}) \rangle$ , within a given Hubble patch can be written in terms of its vacuum expectation value

- (in the absence of  $\zeta_L$ ),  $\xi_0$ , as:  $\zeta_{s}(\mathbf{y})$ 3-pt func. =  $\langle (\zeta_S)^2 \zeta_L \rangle = \langle \xi_{\zeta_L} \zeta_L \rangle$  $= (|-n_s)\xi_0(|\mathbf{x}-\mathbf{y}|) < \zeta_L^2 >$ 54
- $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L [d\xi_0(|\mathbf{x}-\mathbf{y}|)/d\zeta_L]$ •  $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L [d\xi_0(|\mathbf{x}-\mathbf{y}|)/d\ln|\mathbf{x}-\mathbf{y}|]$ •  $\xi_{\zeta L} \approx \xi_0(|\mathbf{x}-\mathbf{y}|) + \zeta_L(|\mathbf{u}-\mathbf{n}_s)\xi_0(|\mathbf{x}-\mathbf{y}|)$

## Where was "Single-field"?

- Where did we assume "single-field" in the proof?
- For this proof to work, it is crucial that there is only one dynamical degree of freedom, i.e., it is only  $\zeta_L$  that modifies the amplitude of short-wavelength modes, and nothing else modifies it.
- Also, ζ must be constant outside of the horizon (otherwise anything can happen afterwards). This is also the case for single-field inflation models.

## Probing Inflation (3-point Function)

 No detection of this form of 3-point function of primordial curvature perturbations. The 95% CL limit is:

• 
$$-10 < f_{NL}^{local} < 74$$

•  $f_{NL}^{local} = 32 \pm 21$  (68% CL)

### After 9 years of observations... WMAP taught us:

 All of the basic predictions of single-field and slow-roll inflation models are consistent with the data  $(I-n_s \approx r \approx f_{NL})$ 

• But, not all models are consistent (i.e.,  $\lambda \phi^4$  is out unless you introduce a non-minimal coupling)



### However

- We cannot say, just yet, that we have definite evidence for inflation.
- Can we ever prove, or disprove, inflation?

### Planck may:



- Prove inflation by detecting the effect of primordial gravitational waves on polarization of the cosmic microwave background (i.e., detection of r)
- Rule out single-field inflation by detecting a particular form of the 3-point function called the "local form" (i.e., detection of f<sub>NL</sub><sup>local</sup>)



Challenge the inflation paradigm by detecting a violation of inequality that should be satisfied between the local-form 3-point and 4-point functions



### But...

### • Can you falsify inflation (not just single-field models)?

## Maybe!

- Using the consistency relation between the local-form 3- and 4-point functions.
  - - Generalization of the "Suyama-Yamaguchi inequality" (2008)

### Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)

### Which Local-form Trispectrum?

- The local-form bispectrum:
  - $B_{\zeta}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)=(2\pi)^3\delta(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3)f_{NL}[(6/5)P_{\zeta}(\mathbf{k}_1)P_{\zeta}(\mathbf{k}_2)+cyc.]$
- can be produced by a curvature perturbation in position space in the form of:
  - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5) f_{NL} [\zeta_g(\mathbf{x})]^2$
- This can be extended to higher-order:
  - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$

This term  $(\zeta^3)$  is too small to see, so I will ignore this in this talk.

63

### Two Local-form Shapes

- For  $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$ , we obtain the trispectrum:
  - $+P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{4}|))+cyc.]$



•  $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) \{ \mathbf{g}_{NL} [(54/25) P_{\zeta}(\mathbf{k}_1) \}$  $P_{\zeta}(k_2)P_{\zeta}(k_3)+cyc.] + (f_{NL})^2[(18/25)P_{\zeta}(k_1)P_{\zeta}(k_2)(P_{\zeta}(|k_1+k_3|))]$ 



### Generalized Trispectrum

•  $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) \{ g_{NL}[(54/25) P_{\zeta}(k_1) P_{\zeta}(k_2) P_{\zeta}(k_3) + cyc.] + T_{NL}[P_{\zeta}(k_1) P_{\zeta}(k_2) (P_{\zeta}(|\mathbf{k}_1 + \mathbf{k}_3|) + P_{\zeta}(|\mathbf{k}_1 + \mathbf{k}_4|)) + cyc.] \}$ The single-source local form consistency relation,  $T_{NL} = (6/5)(f_{NL})^2$ , may not be respected – additional test of multi-field inflation!





# (Slightly) Generalized Trispectrum Τ<sub>ζ</sub>(**k**<sub>1</sub>,**k**<sub>2</sub>,**k**<sub>3</sub>,**k**<sub>4</sub>)=(2π)<sup>3</sup>δ(**k**<sub>1</sub>+**k**<sub>2</sub>+**k**<sub>3</sub>+**k**<sub>4</sub>) {gnl[(54/25) P<sub>ζ</sub>(k<sub>1</sub>)P<sub>ζ</sub>(k<sub>2</sub>)P<sub>ζ</sub>(k<sub>3</sub>)+cyc.] +T<sub>NL</sub>[P<sub>ζ</sub>(k<sub>1</sub>)P<sub>ζ</sub>(k<sub>2</sub>)(P<sub>ζ</sub>(|

•  $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) \{ g_{\mathsf{NL}}[(! P_{\zeta}(k_1) P_{\zeta}(k_2) P_{\zeta}(k_3) + cyc.] + T_{\mathsf{NL}}[P_{\zeta}(k_1) P_{\zeta}(k_2) (P_{\zeta}(| \mathbf{k}_1 + \mathbf{k}_3|) + P_{\zeta}(|\mathbf{k}_1 + \mathbf{k}_4|)) + cyc.] \}$ The single-source local form consistency relation,  $T_{\mathsf{NL}} = (6/5)(f_{\mathsf{NL}})^2$ , may not be respected – additional test of multi-field inflation!



(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)



• The current limits from WMAP 7-year are consistent with single-field or multifield models.

 So, let's play around with the future.

3-point amplitude



 No detection of anything ( $f_{NL}$  or  $T_{NL}$ ) after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).



- **f<sub>NL</sub> is detected.** Single-field is gone.
- But,  $T_{NL}$  is also detected, in accordance with  $T_{NL} > 0.5(6f_{NL}/5)^2$ expected from most multi-field models.



- f<sub>NL</sub> is detected. Singlefield is gone.
- But,  $T_{NL}$  is not detected, or found to be negative, inconsistent with  $T_{NL} > 0.5(6f_{NL}/5)^2$ .
- Single-field <u>AND</u> most of multi-field models are gone.

### Cosmology in the Next Decade

- Inflation, Dark Energy, Dark Matter, and Neutrinos...
  - We may be able to prove or falsify inflation.
  - This has been regarded as *impossible* in the past, but we may be able to do that!
- Did not have time to talk about: the role of large-scale structure of the Universe on this business, and how we explore DE, DM, and neutrinos...

### **The δN Formalism** Separated by more than H<sup>-1</sup>

 The δN formalism (Starobinsky 1982; Salopek Expa & Bond 1990; Sasaki & N
Stewart 1996) states that the curvature perturbation is equal to the difference in N=lna.

• 
$$\zeta = \delta N = N_2 - N_1$$

• where  $N = \int H dt$ 


## Getting the familiar result

- Single-field example at the linear order:
  - $\zeta = \delta \{ \int Hdt \} = \delta \{ \int (H/\phi') d\phi \} \approx (H/\phi') \delta\phi$
  - Mukhanov & Chibisov; Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner

## Extending to non-linear, multi-field cases

- (Lyth & Rodriguez 2005) • Calculating the bispectrum is then straightforward. Schematically:

  - $f_{NL} \sim < \zeta^3 > / < \zeta^2 > 2$



 $\zeta = \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I} + \frac{1}{2} \sum_{I,I} \frac{\partial^{2} N}{\partial \phi_{I} \partial \phi_{J}} \delta \phi_{I} \delta \phi_{J} + \dots$ 

•  $<\zeta^3>=<(|st)x(|st)x(2nd)>~<\delta\phi^4>\neq 0$ 

$$\frac{N_{,IJ}N_{,I}N_{,J}}{N_{,I}(N_{,I})^2]^2}$$

# Extending to non-linear, multi-field cases

- (Lyth & Rodriguez 2005) • Calculating the trispectrum is also straightforward. Schematically:
  - $<\zeta^4>=<(|st)^2(2nd)^2>~<\delta\varphi^6>\neq 0$
  - $f_{NL} \sim < \zeta^4 > / < \zeta^2 > 3$
- $\tau_{\rm NL} = \frac{\sum_{IJK} N_{,IJ} N_{,J} N_{,IJ}}{[\sum_{I} (N_{I})^2]^3}$

 $\zeta = \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I} + \frac{1}{2} \sum_{I,I} \frac{\partial^{2} N}{\partial \phi_{I} \partial \phi_{J}} \delta \phi_{I} \delta \phi_{J} + \dots$ 

$$\frac{KN_{,K}}{[\sum_{I}(N_{,I})^{2}]^{3}} = \frac{\sum_{I}(\sum_{J}N_{,IJ}N_{,J})^{2}}{[\sum_{I}(N_{,I})^{2}]^{3}}$$

### Now, stare at these.



### Change the variable...



$$a_{I} = \frac{\sum_{J} N_{,IJ} N_{,J}}{[\sum_{J} (N_{,J})^{2}]^{3/2}}$$
$$b_{I} = \frac{N_{,I}}{[\sum_{J} (N_{,J})^{2}]^{1/2}}$$

### $(6/5)f_{NL} = \sum a_{D}b_{I}$ $T_{NL} = (\sum_{a} a)^{2} (\sum_{b} b)^{2}$

### Then apply the Cauchy-Schwarz Inequality

 $\left(\sum_{I} a_{I}^{2}\right) \left(\sum_{I} b_{J}^{2}\right)$ 

Implies (Suyama & Yamaguchi 2008)

 $\tau_{\rm NL} \ge \left(\frac{6f_{\rm NL}^{\rm local}}{5}\right)^2$ 

How generic is this inequality?

$$\ge \left(\sum_I a_I b_I\right)^2$$