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Cosmology: Next Decade?
• Astro2010: Astronomy & Astrophysics Decadal Survey

• Report from Cosmology and Fundamental Physics Panel 
(Panel Report, Page T-3):
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Cosmology Update: WMAP 7-year+

• Standard Model

• H&He = 4.58% (±0.16%)

• Dark Matter = 22.9% (±1.5%)

• Dark Energy = 72.5% (±1.6%)

• H0=70.2±1.4 km/s/Mpc

• Age of the Universe = 13.76 billion 
years (±0.11 billion years) “ScienceNews” article on 

the WMAP 7-year results
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Can we prove/falsify inflation ?*

* A period of rapidly accelerating phase of the early universe.
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What does inflation do?
• Inflation can:

• Make 3d geometry of the observable universe flatter 
than that imposed by the initial condition

• Produce scalar quantum fluctuations which can seed 
the observed structures, with a nearly scale-invariant 
spatial spectrum

• Produce tensor quantum fluctuations which can be 
observed in the form of primordial gravitational 
waves, with a nearly scale-invariant spectrum
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Stretching Micro to Macro
H–1 = Hubble Size

δφ
Quantum fluctuations on microscopic scales

INFLATION!

Quantum fluctuations cease to be quantum, and become observable
δφ 7



And, they look like these

In Photon

In Matter
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Inflation produces:
• Curvature perturbation, ζ.

• For the metic of

• We define

• ζ = Φ – Hδφ/(dφ/dt)

• It is “curvature perturbation” because it has Φ in it.

• ζ is a gauge-invariant quantity. It is precisely the 
curvature perturbation in the so-called “comoving 
gauge” in which δφ vanishes (for a single-field model) 9



And ζ produces:
• Temperature anisotropy (on very large scales):

• δT/T = –(1/5)ζ  [Sachs-Wolfe Effect]

• Density fluctuation (on very large scales):

• δ = –Δζ / (4πGa2ρ) [Poisson Equation]

• Therefore, the statistical properties of the observed 
quantities such as the temperature anisotropy of the 
cosmic microwave background and the density 
fluctuations of matter distribution tell us something 
about inflation!
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Inflation also produces:

• Tensor perturbations, hijTT.

• For the metic of

ds2=–dt2+a2(t)[δij+hijTT]dxidxj

• For a tensor perturbation (gravitational waves) 
propagating in z direction (in the so-called 
transverse&traceless gauge), 

• h+ = h11TT = h22TT [“+” mode]

• hx = h12TT = h21TT [“x” mode]
11



Scalar Perturbations
(Density Fluctuations)
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Power Spectrum of ζ
• A very successful explanation (Mukhanov & Chibisov; 

Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & 
Turner) is:

• Primordial fluctuations were generated by quantum 
fluctuations of the scalar field that drove inflation.

• The prediction: a nearly scale-invariant power spectrum 
in the curvature perturbation:

• Pζ(k) = <|ζk|2> = A/k4–ns ~ A/k3

• where ns~1 and A is a normalization.
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WMAP Power Spectrum
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Getting rid of the Sound Waves
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Primordial Ripples

Large Scale Small Scale



Inflation Predicts:
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Small ScaleLarge Scale

l(l+1)Cl ~ lns–1

where ns~1



Inflation may do this
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Small ScaleLarge Scale

“blue tilt” ns > 1
(more power on small scales)

l(l+1)Cl ~ lns–1



...or this
A

ng
ul

ar
 P

ow
er

 S
pe

ct
ru

m

18

“red tilt” ns < 1
(more power on large scales)

Small ScaleLarge Scale

l(l+1)Cl ~ lns–1



WMAP 7-year Measurement (Komatsu et al. 2011)
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ns = 0.968 ± 0.012
(more power on large scales)

Small ScaleLarge Scale

l(l+1)Cl ~ lns–1



Tensor Perturbations
(Gravitational Waves)
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Gravitational waves are coming 
toward you... What do you do?

•Gravitational waves stretch 
space, causing particles to move.
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Physics of CMB Polarization

• CMB Polarization is created by a local temperature 
quadrupole anisotropy. 22

Wayne Hu



Principle

• Polarization direction is parallel to “hot.”
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Two Polarization States of GW

• This is great - this will automatically 
generate quadrupolar temperature 
anisotropy around electrons!
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“+” Mode “X” Mode



From GW to CMB Polarization

Electron
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From GW to CMB Polarization
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From GW to CMB Polarization

27



“Tensor-to-scalar Ratio,” r

ζ
In terms of the slow-roll parameter:

r=16ε
where ε = –(dH/dt)/H2 = 4πG(dφ/dt)2/H2 ≈ (16πG)–1(dV/dφ)2/V2
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• No detection of polarization from gravitational 
waves (B-mode polarization) yet. 
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E-modes

B-modes
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Proof: A Punch Line

• Detection of the primordial gravitational wave (i.e., the 
tensor-to-scalar ratio, “r”) with the expected shape of 
the spectrum provides an unambiguous proof that 
inflation did occur in the early universe!
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How can we falsify inflation?
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How can we falsify single-field 
inflation?
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Single Field 
= Adiabatic fluctuations

• Single-field inflation = One degree of freedom.

• Matter and radiation fluctuations originate from a 
single source.

= 0

* A factor of 3/4 comes from the fact that, in thermal 
equilibrium, ρc~(1+z)3 and ργ~(1+z)4.

Cold 
Dark Matter

Photon
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Non-adiabatic Fluctuations

• Detection of non-adiabatic fluctuations immediately 
rule out single-field inflation models.

The data are consistent with adiabatic fluctuations:

< 0.09  (95% CL)
| |

Komatsu et al. (2011)
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Inflation looks good
(in 2-point function)

• Joint constraint on the 
primordial tilt, ns, and the 
tensor-to-scalar ratio, r.

• r < 0.24 (95%CL; 
WMAP7+BAO+H0)
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Bispectrum

• Three-point function!

• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)

38

model-dependent function
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Single Field Theorem

= Negligible “Local-form” 
Three-point Function



MOST IMPORTANT



Gaussian? WMAP5
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Take One-point Distribution Function

•The one-point distribution of WMAP map looks 
pretty Gaussian.
–Left to right: Q (41GHz), V (61GHz), W (94GHz).

•Deviation from Gaussianity is small, if any.
42

Spergel et al. (2008)



Inflation Likes This Result

• According to inflation (Mukhanov & Chibisov; Guth & Yi; 
Hawking; Starobinsky; Bardeen, Steinhardt & Turner), 
CMB anisotropy was created from quantum 
fluctuations of a scalar field in Bunch-Davies 
vacuum during inflation

• Successful inflation (with the expansion factor more than 
e60) demands the scalar field be almost interaction-free

• The wave function of free fields in the ground state is a 
Gaussian!
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But, Not Exactly Gaussian

• Of course, there are always corrections to the simplest 
statement like this.

• For one, inflaton field does have interactions. They are 
simply weak – they are suppressed by the so-called 
slow-roll parameter, ε~O(0.01), relative to the free-field 
action.
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A Non-linear Correction to 
Temperature Anisotropy

• The CMB temperature anisotropy, ΔT/T, is given by the 
curvature perturbation in the matter-dominated era, Φ.

• One large scales (the Sachs-Wolfe limit), ΔT/T=–Φ/3.

• Add a non-linear correction to Φ:

• Φ(x) = Φg(x) + fNL[Φg(x)]2 (Komatsu & Spergel 2001)

• fNL was predicted to be small (~0.01) for slow-roll 
models (Salopek & Bond 1990; Gangui et al. 1994)
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For the Schwarzschild 
metric, Φ=+GM/R.



fNL: Form of Bζ
• Φ is related to the primordial curvature 

perturbation, ζ, as Φ=(3/5)ζ.

• ζ(x) = ζg(x) + (3/5)fNL[ζg(x)]2

• Bζ(k1,k2,k3)=(6/5)fNL x (2π)3δ(k1+k2+k3) x 
[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]
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fNL: Shape of Triangle
• For a scale-invariant spectrum, Pζ(k)=A/k3, 

• Bζ(k1,k2,k3)=(6A2/5)fNL x (2π)3δ(k1+k2+k3) 
x [1/(k1k2)3 + 1/(k2k3)3 + 1/(k3k1)3]

• Let’s order ki such that k3≤k2≤k1. For a given k1, 
one finds the largest bispectrum when the 
smallest k, i.e., k3, is very small.

• Bζ(k1,k2,k3) peaks when k3 << k2~k1

• Therefore, the shape of fNL bispectrum is the  
squeezed triangle!

47(Babich et al. 2004)



Bζ in the Squeezed Limit

• In the squeezed limit, the fNL bispectrum becomes: Bζ
(k1,k2,k3) ≈ (12/5)fNL x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)
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Single-field Theorem 
(Consistency Relation)

• For ANY single-field models*, the bispectrum in the 
squeezed limit is given by

• Bζ(k1,k2,k3) ≈ (1–ns) x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)

• Therefore, all single-field models predict fNL≈(5/12)(1–ns).

• With the current limit ns=0.96, fNL is predicted to be 0.017.

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

* for which the single field is solely responsible for driving 
inflation and generating observed fluctuations. 49



Understanding the Theorem

• First, the squeezed triangle correlates one very long-
wavelength mode, kL (=k3), to two shorter wavelength 
modes, kS (=k1≈k2):

• <ζk1ζk2ζk3> ≈ <(ζkS)2ζkL>

• Then, the question is: “why should (ζkS)2 ever care 
about ζkL?”

• The theorem says, “it doesn’t care, if ζk is exactly 
scale invariant.”
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ζkL rescales coordinates

• The long-wavelength 
curvature perturbation 
rescales the spatial 
coordinates (or changes the 
expansion factor) within a 
given Hubble patch:

• ds2=–dt2+[a(t)]2e2ζ(dx)2

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2
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ζkL rescales coordinates

• Now, let’s put small-scale 
perturbations in.

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation?

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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ζkL rescales coordinates

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation? 

• A. No change, if ζk is scale-
invariant. In this case, no 
correlation between ζkL and 
(ζkS)2 would arise. 

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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Real-space Proof
• The 2-point correlation function of short-wavelength 

modes, ξ=<ζS(x)ζS(y)>, within a given Hubble patch 
can be written in terms of its vacuum expectation value 
(in the absence of ζL),  ξ0, as:

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dζL]

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dln|x–y|]

• ξζL ≈ ξ0(|x–y|) + ζL (1–ns)ξ0(|x–y|)

Creminelli & Zaldarriaga (2004); Cheung et al. (2008)

3-pt func. = <(ζS)2ζL> = <ξζLζL>
= (1–ns)ξ0(|x–y|)<ζL2>

• ζS(x)

• ζS(y)
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Where was “Single-field”?

• Where did we assume “single-field” in the proof?

• For this proof to work, it is crucial that there is only 
one dynamical degree of freedom, i.e., it is only ζL that 
modifies the amplitude of short-wavelength modes, and 
nothing else modifies it.

• Also, ζ must be constant outside of the horizon 
(otherwise anything can happen afterwards). This is also 
the case for single-field inflation models.
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Probing Inflation (3-point Function)

• No detection of this form of 3-point function of primordial 
curvature perturbations. The 95% CL limit is:

• –10 < fNLlocal < 74

• fNLlocal = 32 ± 21 (68% CL)
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WMAP taught us:

• All of the basic predictions of single-field and 
slow-roll inflation models are consistent with 
the data (1–ns≈r≈fNL)

• But, not all models are consistent (i.e., λφ4 is out 
unless you introduce a non-minimal coupling)

57

After 9 years of observations...



However

• We cannot say, just yet, that we have definite evidence 
for inflation.

• Can we ever prove, or disprove, inflation?
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Planck may:

• Prove inflation by detecting the effect of primordial 
gravitational waves on polarization of the cosmic 
microwave background (i.e., detection of r)

• Rule out single-field inflation by detecting a particular 
form of the 3-point function called the “local 
form” (i.e., detection of fNLlocal)

• Challenge the inflation paradigm by detecting a violation 
of inequality that should be satisfied between the local-
form 3-point and 4-point functions
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Planck might find gravitational 
waves (if r~0.1)

Planck?

If found, this would 
give us a pretty 

convincing proof 
that inflation did 
indeed happen.

60



But...

• Can you falsify inflation (not just single-field models)?
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Maybe!

• Using the consistency relation between the local-form 
3- and 4-point functions.

• Sugiyama, Komatsu & Futamase, PRL, 106, 251301(2011)

• Generalization of the “Suyama-Yamaguchi 
inequality” (2008)



Which Local-form Trispectrum?
• The local-form bispectrum:

• Βζ(k1,k2,k3)=(2π)3δ(k1+k2+k3)fNL[(6/5)Pζ(k1)Pζ(k2)+cyc.]

• can be produced by a curvature perturbation in position space in 
the form of:

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2

• This can be extended to higher-order: 

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3

63
This term (ζ3) is too small to see, so I 

will ignore this in this talk.



Two Local-form Shapes
• For ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3, we 

obtain the trispectrum:

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)Pζ(k1)
Pζ(k2)Pζ(k3)+cyc.] +(fNL)2[(18/25)Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)
+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

fNL2 64



Generalized Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)
Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +τNL[Pζ(k1)Pζ(k2)(Pζ(|
k1+k3|)+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 65

The single-source local form consistency relation, 
τNL=(6/5)(fNL)2, may not be respected – 

additional test of multi-field inflation!



(Slightly) Generalized 
Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)
Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +τNL[Pζ(k1)Pζ(k2)(Pζ(|
k1+k3|)+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 66

The single-source local form consistency relation, 
τNL=(6/5)(fNL)2, may not be respected – 

additional test of multi-field inflation!



τNL >~ (6fNL/5)2 

• The current limits 
from WMAP 7-year 
are consistent with 
single-field or multi-
field models.

• So, let’s play around 
with the future.

67ln(fNL)

ln(τNL)

74

3.3x104

(Smidt et 
al. 2010)

(Komatsu et al. 2011)

4-point 
amplitude

3-point 
amplitude

4-point 
amplitude

(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)



Case A: Single-field Happiness

• No detection of 
anything (fNL or 
τNL) after Planck. 
Single-field survived 
the test (for the 
moment: the future 
galaxy surveys can 
improve the limits 
by a factor of ten).

ln(fNL)

ln(τNL)

10

600
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Case B: Multi-field Happiness(?)

• fNL is detected. 
Single-field is gone.

• But, τNL is also 
detected, in accordance 
with τNL>0.5(6fNL/5)2           
expected from most 
multi-field models.

ln(fNL)

ln(τNL)

600

6930

(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)



Case C: Madness
• fNL is detected. Single-

field is gone.

• But, τNL is not detected, 
or found to be negative, 
inconsistent with 
τNL>0.5(6fNL/5)2.

• Single-field AND 
most of multi-field 
models are gone.

ln(fNL)

ln(τNL)

30

600

70

(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)



Cosmology in the Next 
Decade

• Inflation, Dark Energy, Dark Matter, and Neutrinos...

• We may be able to prove or falsify inflation. 

• This has been regarded as impossible in the past, but 
we may be able to do that!

• Did not have time to talk about: the role of large-scale 
structure of the Universe on this business, and how we 
explore DE, DM, and neutrinos...
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The δN Formalism

• The δN formalism 
(Starobinsky 1982; Salopek 
& Bond 1990; Sasaki & 
Stewart 1996) states that 
the curvature 
perturbation is equal to 
the difference in N=lna.

• ζ=δN=N2–N1

• where N=∫Hdt

Separated by more than H-1

72

Expanded by 
N1=lna1

Expanded by 
N2=lna2



Getting the familiar result

• Single-field example at the linear order:

• ζ = δ{∫Hdt} = δ{∫(H/φ’)dφ}≈(H/φ’)δφ
• Mukhanov & Chibisov; Guth & Pi; Hawking; 

Starobinsky; Bardeen, Steinhardt & Turner
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Extending to non-linear, 
multi-field cases

• Calculating the bispectrum is then straightforward. 
Schematically:

• <ζ3>=<(1st)x(1st)x(2nd)>~<δφ4>≠0

• fNL~<ζ3>/<ζ2>2

(Lyth & Rodriguez 2005)
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• Calculating the trispectrum is also straightforward. 
Schematically:

• <ζ4>=<(1st)2(2nd)2>~<δφ6>≠0

• fNL~<ζ4>/<ζ2>3

(Lyth & Rodriguez 2005)

75

Extending to non-linear, 
multi-field cases



Now, stare at these.
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Change the variable...

(6/5)fNL=∑IaIbI

τNL=(∑IaI)2(∑IbI)2
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Then apply the 
Cauchy-Schwarz Inequality

• Implies

How generic is this inequality?

(Suyama & Yamaguchi 2008)
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