Non-Gaussianity

Eiichiro Komatsu (Department of Astronomy, University of Texas at Austin) IUPAP Prize Talk, Texas Symposium 2008, Vancouver December 10, 2008

Thank You, I'm Honored To Receive the Prize.

Center for Cosmology, The University of Texas Austin

 The new Center for Cosmology will be founded in January 2009, at the University of Texas at Austin!

Research Unit, Center for Cosmology Physics Astronomy **Duane Dicus** Jacques Distler Gary Hill Willy Fischler Vadim Kaplunovsky Sonia Paban Paul Shapiro Steven Weinberg

3

Volker Bromm Karl Gebhardt Eiichiro Komatsu(Director) Milos Milosavljevic

Why Study Non-Gaussianity?

- What do I mean by "non-Gaussianity"?
 - Non-Gaussianity = Not a Gaussian Distribution
 - Distribution of *what*?
 - Distribution of primordial fluctuations.
 - How do we observe primordial fluctuations?
 - In several ways: believe me, we can do that.
 - What is non-Gaussianity good for?

Probing the Primordial Universe

Messages From the Primordial Universe...

Komatsu et al. (2008) Observations I: Homogeneous Universe • $H^{2}(z) = H^{2}(0)[\Omega_{r}(|+z)^{4} + \Omega_{m}(|+z)^{3} + \Omega_{k}(|+z)^{2} + \Omega_{de}(|+z)^{3}(|+w)]$ • (expansion rate) $H(0) = 70.5 \pm 1.3 \text{ km/s/Mpc}$

- - (radiation) $\Omega_r = (8.4 \pm 0.3) \times 10^{-5}$
 - (matter) $\Omega_{\rm m} = 0.274 \pm 0.015$
 - (curvature) $\Omega_k < 0.008$ (95%CL) -> Inflation
 - (dark energy) $\Omega_{de} = 0.726 \pm 0.015$
 - (DE equation of state) $I + w = -0.006 \pm 0.068$

composition of our Universe Cosmic Pie Chart

 WMAP 5-Year Data, combined with the local distance measurements from Type la Supernovae and Large-scale structure (BAOs).

H, He Dark Matter Dark Energy

Observations II: Density Fluctuations, $\delta(x)$ • In Fourier space, $\delta(k) = A(k) \exp(i\varphi_k)$

- - **Power**: $P(k) = \langle \delta(k) |^2 \rangle = A^2(k)$
 - **Phase**: ϕ_k
- We can use the observed distribution of...
 - matter (e.g., galaxies, gas)
 - radiation (e.g., Cosmic Microwave Background)
- to learn about both P(k) and φ_k .

SDSS

Radiation Distribution

• Matter distribution at z=1090: P(k), φ_k

WMAP5

P(k): There were expectations

- Metric perturbations in g_{ij} (let's call that "curvature perturbations" Φ) is related to δ via
 - $k^2\Phi(k)=4\pi G\rho a^2\delta(k)$
- Variance of $\Phi(x)$ in position space is given by
 - $<\Phi^2(x)>=\int \ln k k^3 |\Phi(k)|^2$
 - In order to avoid the situation in which curvature (geometry) diverges on small or large scales, a "scaleinvariant spectrum" was proposed: k³|Φ(k)|² = const.
 - This leads to the expectation: $P(k) = |\delta(k)|^2 = k^{ns} (n_s = 1)$
 - Harrison 1970; Zel'dovich 1972; Peebles&Yu 1970¹¹

Take Fourier Transform of WMAP5

• ...and, square it in your head...

...and decode it. Nolta et al. (2008)

The Cosmic Sound Wave

 Hydrodynamics in the early universe (z>1090) created sound waves in the matter and radiation distribution

If there were no hydrodynamics...

If there were no hydrodynamics...

If there were no hydrodynamics...

SDSS

...and decode it.

- Decoding is complex, but you can do it.
- The latest result (from WMAP+: Komatsu et al.)

- $n_s = 0.960 \pm 0.013$
- 3.1σ away from scaleinvariance, n_s=1!

SDSS Data

-0.5

Linear Theory

P(k) Modified by Hydrodynamics at z=1090, and

Gravitational Evolution until z=0

-1.5

Deviation from $n_s = I$

- This was expected by many inflationary models
- In n_s-r plane (where r is called the "tensorto-scalar ratio," which is P(k) of gravitational waves divided by P(k) of density fluctuations) many inflationary models are compatible with the current data
- Many models have been excluded also

Searching for Primordial Gravitational Waves in CMB

- Not only do inflation models produce density fluctuations, but also primordial gravitational waves
- Some predict the observable amount (r>0.01), some don't
 - Current limit: r<0.22 (95%CL) (Komatsu et al.)
- Alternative scenarios (e.g., New Ekpyrotic) don't
- A powerful probe for testing inflation and testing specific models: next "Holy Grail" for CMBist

What About Phase, ϕ_k

- There were expectations also:
 - Random phases! (Peebles, ...)
- Collection of random, uncorrelated phases leads to the most famous probability distribution of δ :

Gaussian Distribution

• Phases are not random, due to non-linear gravitational evolution

SDSS

 The one-point distribution of WMAP map looks pretty Gaussian.

-Left to right: Q (41GHz), V (61GHz), W (94GHz). Deviation from Gaussianity is small, if any.

Spergel et al. (2008)

Inflation Likes This Result

- According to inflation (Guth & Yi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner), CMB anisotropy was created from quantum fluctuations of a scalar field in Bunch-Davies vacuum during inflation
- Successful inflation (with the expansion factor more than e⁶⁰) demands the scalar field be almost interaction-free
- The wave function of free fields in the ground state is a Gaussian!

But, Not Exactly Gaussian

- Of course, there are always corrections to the simplest statement like this
- For one, inflaton field **does** have interactions. They are simply weak – of order the so-called slow-roll parameters, ε and η , which are O(0.01)

Non-Gaussianity from Inflation You need cubic interaction terms (or higher order)

- of fields.
 - $-V(\phi) \sim \phi^3$: Falk, Rangarajan & Srendnicki (1993) [gravity] not included yet]
 - -Full expansion of the action, including gravity action, to cubic order was done a decade later by Maldacena (2003)

$$\phi = \phi(t) + \varphi(t, x)$$

$$\delta^{2} \chi = \frac{\dot{\phi}^{2}}{2\dot{\rho}^{2}} \frac{d}{dt} \left(-\frac{\dot{\rho}}{\dot{\phi}} \varphi \right)$$

$$S_{3} = \int e^{3\rho} \left(-\frac{\dot{\phi}}{4\dot{\rho}} \varphi \dot{\phi}^{2} - \frac{\dot{\phi}^{2}}{4\dot{\rho}} \dot{\phi}^{2} - \frac{\dot{\phi}^{2}}{4\dot{\phi}} \dot{\phi}^{2} -$$

Computing Primordial Bispectrum Three-point function, using in-in formalism (Maldacena 2003; Weinberg 2005)

3-point function $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \langle \operatorname{in} \left| \tilde{T} e^{i \int_{-\infty}^t H_I(t') dt'} \Phi(\mathbf{x}_1) \Phi(\mathbf{x}_2) \Phi(\mathbf{x}_3) T e^{-i \int_{-\infty}^t H_I(t') dt'} \right| \operatorname{in} \rangle$

- • $H_{I}(t)$: Hamiltonian in interaction picture -Model-dependent: this determines which triangle shapes will dominate the signal
- $\Phi(x)$: operator representing curvature perturbations in interaction picture

Simplified Treatment

- Let's try to capture field interactions, or whatever nonlinearities that might have been there during inflation, by the following simple, order-of-magnitude form (Komatsu & Spergel 2001):
 - $\Phi(\mathbf{x}) = \Phi_{gaussian}(\mathbf{x}) + \mathbf{f}_{NL}[\Phi_{gaussian}(\mathbf{x})]^2$
 - One finds f_{NL}=O(0.01) from inflation (Maldacena 2003; Acquaviva et al. 2003)
- This is a powerful prediction of inflation

Earlier work on this form: Salopek&Bond (1990); Gangui et al. (1994); Verde et al. (2000); Wang&Kamionkowski (2000)

Why Study Non-Gaussianity?

- Because a detection of f_{NL} has a best chance of **ruling out** the largest class of inflation models.
- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Bunch-Davies vacuum.

Detection of non-Gaussianity would be a major breakthrough in cosmology.

We have *r* and *n*_s. Why Bother?

- While the current limit on the power-law index of the primordial power spectrum, n_s, and the amplitude of gravitational waves, r, have ruled out many inflation models already, many still survive (which is a good thing!)
- A convincing detection of f_{NL} would rule out most of them regardless of n_s or r.
- f_{NL} offers more ways to test various early universe models!

Tool: Bispectrum

- Bispectrum = Fourier Trans. of 3-pt Function
- The bispectrum vanishes for Gaussian fluctuations with random phases.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A sensitive tool for finding non-Gaussianity.

f_{NL} Generalized

• f_{NL} = the amplitude of bispectrum, which is

- = $\langle \Phi(k_1) \Phi(k_2) \Phi(k_3) \rangle = \int_{NL} (2\pi)^3 \delta^3(k_1 + k_2 + k_3) b(k_1, k_2, k_3)$
- where $\Phi(k)$ is the Fourier transform of the curvature perturbation, and $b(k_1,k_2,k_3)$ is a modeldependent function that defines the shape of triangles predicted by various models.

Two fni's

There are more than two; I will come back to that later.

- Depending upon the shape of triangles, one can define various f_{NL}'s:
- "Local" form
 - which generates non-Gaussianity locally in position space via $\Phi(x) = \Phi_{gaus}(x) + f_{NL} \int [\Phi_{gaus}(x)]^2$
- "Equilateral" form <
 - space (e.g., k-inflation, DBI inflation)

which generates non-Gaussianity locally in momentum

Forms of b(k₁,k₂,k₃)

- Local form (Komatsu & Spergel 2001)
 - $b^{\text{local}}(k_1,k_2,k_3) = 2[P(k_1)P(k_2)+cyc.]$

- Equilateral form (Babich, Creminelli & Zaldarriaga 2004)
 - $b^{equilateral}(k_1,k_2,k_3) = 6\{-[P(k_1)P(k_2)+cyc.] 2[P(k_1)P(k_2)P(k_3)]^{2/3} + [P(k_1)^{1/3}P(k_2)^{2/3}P(k_3)+cyc.]\}$

Decoding Bispectrum

6

 ${1 \atop -1}^{l(l+1)b_{l}^{L}(r)/2\pi}_{b_{l}}$

-6

်ကု

 ${\rm b}_{
m l}^{
m NL}(r){
m f}_{
m NL}^{-1}$

- Hydrodynamics at z=1090 generates acoustic oscillations in the bispectrum
- Well understood at the linear level (Komatsu & Spergel 2001)
- Non-linear extension?
 - Nitta, Komatsu, Bartolo,
 Matarrese & Riotto in prep.

What if f_{NL} is detected?

- A single field, canonical kinetic term, slow-roll, and/or Banch-Davies vacuum, must be modified.
- Local Multi-field (curvaton);

Preheating (e.g., Chambers & Rajantie 2008)

- **Equil.** Non-canonical kinetic term (k-inflation, DBI)
- Bump Temporary fast roll (features in potential) +Osci.
- **Folded** Departures from the Bunch-Davies vacuum
 - It will give us a lot of clues as to what the correct early universe models should look like. 38

...or, simply not inflation?

- It has been pointed out recently that New Ekpyrotic scenario generates $f_{NL}^{local} \sim 100$ generically
 - Creminelli & Senatore; Koyama et al.; Buchbinder et al.; Lehners & Steinhardt

Measurement

• Use everybody's favorite: χ^2 minimization.

- with respect to $A_i = (f_{NL}^{local}, f_{NL}^{equilateral}, b_{src})$
- B^{obs} is the observed bispectrum
- B⁽ⁱ⁾ is the theoretical template from various predictions

$$\sum_{i} A_{i} B_{l_{1}l_{2}l_{3}}^{(i)} \Big)^{2}$$

$$\sigma_{l_1 l_2 l_3}^2$$

Journal on f_{NL}

- $-3500 < f_{NL}^{local} < 2000 [COBE 4yr, I_{max}=20]$ Komatsu et al. (2002)
- $-58 < f_{NL}^{local} < 134 [WMAP lyr, l_{max}=265]$ Komatsu et al. (2003)
- $-54 < f_{NL}^{local} < 114 [WMAP 3yr, I_{max}=350]$ Spergel et al. (2007)
- $-9 < f_{NL}^{local} < ||| [WMAP 5yr, I_{max}=500]$ Komatsu et al. (2008)
- Equilateral

Local

- $-366 < f_{NL}^{equil} < 238 [WMAP | yr, |_{max} = 405]$ Creminelli et al. (2006)
- $-256 < f_{NL}^{equil} < 332 [WMAP 3yr, I_{max} = 475]$ Creminelli et al. (2007)
- -151 < f_{NL}^{equil} < 253 [WMAP 5yr, Imax=700] 41
 Komatsu et al. (2008)</p>

What does f_{NL}~100 mean?

- Recall this form: $\Phi(x) = \Phi_{gaus}(x) + f_{NL} [\phi_{gaus}(x)]^2$
 - Φ_{gaus} is small, of order 10⁻⁵; thus, the second term is 10^{-3} times the first term, if $f_{NL} \sim 100$
 - Precision test of inflation: non-Gaussianity term is less than 0.1% of the Gaussian term
 - cf: flatness tests inflation at 1% level

Non-Gaussianity Has Not Been Discovered Yet, but...

- At 68% CL, we have $f_{NL}=51\pm30$ (positive 1.7 σ)
 - Shift from Yadav & Wandelt's 2.8σ "hint" (f_{NL}~80) from the 3-year data can be explained largely by adding more years of data, i.e., statistical fluctuation, and a new 5-year Galaxy mask that is 10% larger than the 3-year mask
- There is a room for improvement
 - More years of data (WMAP 9-year survey funded!)
 - Better statistical analysis (Smith & Zaldarriaga 2006)
 - IF (big if) $f_{NL}=50$, we would see it at 3σ in the 9-year data

Exciting Future Prospects

- Planck satellite (to be launched in March 2009) • will see f_{NL}^{local} at $I 7 \sigma$, IF (big if) $f_{NL}^{local} = 50$

Summary Non-Gaussianity is a new, powerful probe of

- physics of the early universe
 - It has a best chance of ruling out the largest class of inflation models — could even rule out the inflationary paradigm, and support alternatives
- Various forms of f_{NL} available today 1.7 σ at the moment, wait for WMAP 9-year (2011) and Planck (2012) for $>3\sigma$
- To convince ourselves of detection, we need to see the acoustic oscillations, and the same signal in bispectrum, trispectrum, Minkowski functionals, of both CMB and largescale structure of the universe
- New "industry" active field!