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March 17, 2014
BICEP2’s announcement







One of the goals of this presentation is to help you 
understand what this figure is actually showing

Signature of Cosmic Inflation 
in the Sky [?]

BICEP2 Collaboration



Breakthroughs in 
Cosmological Research Over 

the Last Two Decades

• We can actually see the physical condition of the 
universe when it was very young



From “Cosmic Voyage”



Sky in Optical (~0.5μm)



Sky in Microwave (~1mm)





COBE/DMR, 1992

•CMB is anisotropic! 
(at the 1/100,000 level)

Smoot et al. (1992)
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http://preposterousuniverse.com/writings/cosmologyprimer/images/wmap-cobe.jpg
http://map.gsfc.nasa.gov/m_ig/990293/990293.html
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Outstanding Questions
• Where does anisotropy in CMB temperature come 

from? 

• This is the origin of galaxies, stars, planets, and 
everything else we see around us, including 
ourselves 

• The leading idea: quantum fluctuations in 
vacuum, stretched to cosmological length scales 
by a rapid exponential expansion of the universe 
called “cosmic inflation” in the very early universe
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Stretching Micro to Macro

Inflation!

Quantum fluctuations on  
microscopic scales

• Quantum fluctuations cease to be quantum 

• Become macroscopic, classical fluctuations



Key Predictions of Inflation
• Fluctuations we observe today in CMB and 

the matter distribution originate from quantum 
fluctuations generated during inflation 

• There should also be ultra-long-wavelength 
gravitational waves generated during inflation

ζ
scalar
mode

hij
tensor
mode



We measure distortions  
in space

• A distance between two points in space 

• ζ: “curvature perturbation” (scalar mode) 

• Perturbation to the determinant of the spatial metric 

• hij: “gravitational waves” (tensor mode) 

• Perturbation that does not change the determinant (area)
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Tensor-to-scalar Ratio

• We really want to find this quantity! The 
current upper bound: r<0.1 [WMAP & Planck]

r ⌘ hhijhiji
h⇣2i



Fluctuations are  
proportional to H

• [Energy you can borrow] x [Time you borrow] = 
constant 

•   

• Then, both ζ and hij are proportional to H 

• Inflation occurs in 10–36 second - this is such a short 
period of time that you can borrow a lot of energy! 
H during inflation in energy units is 1014 GeV

H ⌘ ȧ

a
[This has units of 1/time]



Key Predictions of Inflation
• Inflation must end; thus, H slowly decreases with time 

• This means that the amplitude of fluctuations on larger 
scales is bigger than those on smaller scales. This 
has now been observed* 

• The origin of fluctuations is quantum. The wave function 
of vacuum fluctuations of a free field is a Gaussian. CMB 
anisotropy is Gaussian to better than 0.1% precision*

• There exist ultra long-wavelength primordial gravitational 
waves. This is yet to be found. How can we find this?

*WMAP 9-year Results (2012) and Planck 2013 Results



CMB Polarisation

• CMB is [weakly] polarised!
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WMAP Collaboration



Stokes Q Stokes U

North

East

WMAP Collaboration

23 GHz [13 mm]



Stokes Q Stokes U

WMAP Collaboration

33 GHz [9.1 mm]



Stokes Q Stokes U

WMAP Collaboration

41 GHz [7.3 mm]



Stokes Q Stokes U

WMAP Collaboration

61 GHz [4.9 mm]



Stokes Q Stokes U

WMAP Collaboration

94 GHz [3.2 mm]



How many components?

• CMB: Tν ~ ν0 

• Synchrotron: Tν ~ ν–3 

• Dust: Tν ~ ν2 

• Therefore, we need at least 3 frequencies to 
separate them



Seeing polarisation in the 
WMAP data

• Average polarisation 
data around cold and 
hot temperature spots 

• Outside of the Galaxy 
mask [not shown], there 
are 11536 hot spots 
and 11752 cold spots 

• Averaging them beats 
the noise down 



Radial and tangential 
polarisation around 
temperature spots
• This shows polarisation 

generated by the plasma 
flowing into gravitational 
potentials 

• Signatures of the “scalar 
mode” fluctuations in 
polarisation 

• These patterns are called 
“E modes”

WMAP Collaboration



Planck Data!
Planck Collaboration



E and B modes

• Density fluctuations 
[scalar modes] can 
only generate E modes 

• Gravitational waves 
can generate both E 
and B modes

B modeE mode

Seljak & Zaldarriaga (1997); Kamionkowski et al. (1997)



Physics of CMB Polarisation

• Necessary and sufficient conditions for generating 
polarisation in CMB: 

• Thomson scattering 

• Quadrupolar temperature anisotropy around an electron

By Wayne Hu



Origin of Quadrupole

• Scalar perturbations: motion of electrons 
with respect to photons 

• Tensor perturbations: gravitational waves



Gravitational waves are 
coming toward you!

• What do they do to the distance between particles?



Two GW modes

• Anisotropic stretching of space generates 
quadrupole temperature anisotropy. How?



GW to temperature 
anisotropy

electrons



GW to temperature 
anisotropy
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• Stretching of space -> temperature drops 

• Contraction of space -> temperature rises



Then to polarisation!
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• Polarisation directions are parallel to hot 
regions



propagation direction of GW

h+=cos(kx)

Polarisation directions perpendicular/parallel to the 
wavenumber vector -> E mode polarisation



propagation direction of GW

hx=cos(kx)

Polarisation directions 45 degrees tilted from to the 
wavenumber vector -> B mode polarisation



Important note:
• Definition of h+ and hx depends on coordinates, but 

definition of E- and B-mode polarisation does not 
depend on coordinates 

• Therefore, h+ does not always give E; hx does not 
always give B 

• The important point is that h+ and hx always 
coexist. When a linear combination of h+ and hx 
produces E, another combination produces B



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

if you wish, you could associate 
one pattern with one plane wave… 

BUT



What is BICEP2?
• A small [26 cm] refractive telescope at South Pole 

• 512 bolometers working at 150 GHz 

• Observed 380 square degrees for three years 
[2010-2012] 

• Previous: BICEP1 at 100 and 150 GHz [2006-2008] 

• On-going: Keck Array = 5 x BICEP2 at 150 GHz 
[2011-2013] and additional detectors at 100 and 
220 GHz [2014-]



Is the signal cosmological?

• Worries: 

• Is it from Galactic foreground emission, 
e.g., dust? 

• Is it from imperfections in the 
experiment, e.g., detector mismatches?







Analysis: Two-point 
Correlation Function

θ
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x: 150GHz x 100GHz [BICEP1]
*: 150GHz x 150GHz [BICEP1]

No 100 GHz x 100 GHz [yet]

BICEP2 Collaboration



Situation until a month ago

• No strong evidence that the detected signal is not 
cosmological 

• No strong evidence that the detected signal is 
cosmological, either



September 22, 2014
Planck’s Intermediate Paper on Dust



• Values of the “tensor-to-scalar ratio” 
equivalent to the B-mode power spectrum 
seen at various locations in the sky

Area observed 
by BICEP2

Planck Collaboration



•Planck measured the B-mode power spectrum 
at 353 GHz well 

•Extrapolating it down to 150 GHz appears to 
explain all of the signal seen by BICEP2…

Planck Collaboration



• Planck shows the evidence that the detected 
signal is not cosmological, but is due to dust 

• No strong evidence that the detected signal 
is cosmological

The search continues!!

Current Situation

1989–1993 2001–2010 2009–2013 202X–



LiteBIRD
• Next-generation polarisation-sensitive microwave 

experiment. Target launch date: early 2020 

• Led by Prof. Masashi Hazumi (KEK); a 
collaboration of ~70 scientists in Japan, USA, 
Canada, and Germany 

• Singular goal: measurement of the primordial B-
mode power spectrum with Err[r]=0.001

• 6 frequency bands between 50 and 320 GHz



Conclusion

• The WMAP and Planck’s temperature data provide 
strong evidence for the quantum origin of 
structures in the universe 

• The next goal: unambiguous measurement of the 
primordial B-mode polarisation power spectrum 

• LiteBIRD proposal: a B-mode CMB polarisation 
satellite in early 2020



How does BICEP2 measure 
polarisation?

• By taking the difference between two detectors 
(A&B), measuring two orthogonal polarisation states

Horizontal slots  
-> A detector

Vertical slots  
    -> B detector

These slots are co-located, so  
they look at approximately 
same positions in the sky 



The E-mode polarisation is totally dominated 
by the scalar-mode fluctuations [density waves]

There are E modes in the 
sky as well

BICEP2 CollaborationBICEP2 Collaboration



Can we rule out synchrotron or dust?

• The answer is No

BICEP2 Collaboration


