IPMU International Conference

Dark Energy: Lighting up the Darkness

<u>http://member.ipmu.jp/darkenergy09/welcome.html</u>

June 22 – 26, 2009 At IPMU (i.e., here)

Primordial Non-Gaussianity and Galaxy Bispectrum (and Conference Summary)

Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) April 10, 2009

Effects of fNL on the statistics of PEAKS

• You heard talks on the effects of f_{NL} on the power spectrum of peaks (i.e., galaxies)

• How about the bispectrum of galaxies?

Previous Calculation

- Sefusatti & Komatsu (2007)
 - Treated the distribution of galaxies as a *continuous distribution*, biased relative to the matter distribution:

•
$$\delta_g = b_1 \delta_m + (b_2/2) (\delta_m)^2 +$$

• Then, the calculation is straightforward. Schematically:

•
$$<\delta_g^3>=(b_1)^3<\delta_m^3>+(b_1^2)^2$$

Non-linear Gravity Nor Primordial NG

- $^{2}b_{2}/2) < \delta_{m}^{4} > + ...$
- Non-linear Bias Bispectrum

$$\begin{aligned} & \operatorname{Previous} \ \mathbf{Ca} \\ & B_g(k_1, k_2, k_3, z) \\ &= 3b_1^3 f_{\mathrm{NL}} \Omega_m H_0^2 \left[\frac{P_m(k_1, z)}{k_1^2 T(k_1)} \frac{P_m}{k_2^2} \right. \\ & + 2b_1^3 \left[F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2) P_m(k_1, z) P_m \right. \\ & + b_1^2 b_2 \left[P_m(k_1, z) P_m(k_2, z) + (\mathbf{k}_1, z) \right] \end{aligned}$$

• We find that this formula captures only a part of the full contributions. In fact, this formula is sub-dominant in the squeezed configuration, and the new terms are dominant.

alculation

Primordial NG $\frac{m(k_2, z)}{2T(k_2)} \frac{k_3^2 T(k_3)}{D(z)} + (\text{cyclic})$ $m_m(k_2, z) + (\text{cyclic}) \begin{bmatrix} \text{Non-linear} \\ \text{Gravity} \end{bmatrix}$ cyclic) Non-linear Bias

Non-linear Gravity

Non-linear Galaxy Bias

• There is no F₂: less suppression at the squeezed, and less enhancement along the elongated triangles.

.4

.2

Still peaks at the equilateral or elongated forms.

Primordial NG (SK07)

$3b_1^3 f_{\rm NL} \Omega_m H_0^2 \left[\frac{P_m(k_1, z)}{k_1^2 T(k_1)} \frac{P_m(k_2, z)}{k_2^2 T(k_2)} \frac{k_3^2 T(k_3)}{D(z)} + (\text{cyclic}) \right]$

• Notice the factors of k^2 in the denominator.

This gives the peaks at the squeezed configurations.

10⁻⁵

10-4

New Terms

- But, it turns our that Sefusatti & Komatsu's calculation, which is valid only for the continuous field, misses the dominant terms that come from the statistics of PEAKS.
- Jeong & Komatsu, arXiv:0904.0497

$$Matarrese, Lucchin \& Bond
MLB Formula
$$1 + \xi_h(x_{12}) + \xi_h(x_{23}) + \xi_h(x_{31}) + \zeta_h(x_1, x_2, x_3)$$

$$= \exp\left[\frac{1}{2}\frac{\nu^2}{\sigma_R^2}\sum_{i\neq j}\xi_R^{(2)}(x_{ij}) + \sum_{n=3}^{\infty}\left\{\sum_{m_1=0}^n\sum_{m_2=0}^{n-m_1}\frac{\nu^n}{m_1!m_1!m_2!}\right\}$$

$$\times \xi_R^{(n)}\left(\begin{array}{c} x_1, \cdots, x_1, x_2, \cdots, x_2, x_3, \cdots, x_3\\ m_1 \text{ times } m_2 \text{ times } m_3 \text{ times}\end{array}\right)$$

$$-3\frac{\nu^n \sigma_R^{-n}}{n!}\xi_R^{(n)}\left(\begin{array}{c} x, \cdots, x\\ n \text{ times}\end{array}\right)\right\}$$$$

 N-point correlation function of peaks is the sum of Mpoint correlation functions, where $M \ge N$.

· · • • nometto (1986)

J	$\int \frac{n}{\sum}$	\sum^{n-m_1}	$\nu^n \sigma_R^{-n}$
$\binom{2}{3}$	$\sum_{m_1=0}$	$\sum_{m_2=0}$	$m_1!m_2!m_3!$

Bottom Line

The bottom line is:

- The power spectrum (2-pt function) of peaks is sensitive to the power spectrum of the underlying mass distribution, and the bispectrum, and the trispectrum, etc.
 - Truncate the sum at the bispectrum: sensitivity to f_{NL}
 - Dalal et al.; Matarrese&Verde; Slosar et al.; Afshordi&Tolley

Bottom Line

The bottom line is:

- The bispectrum (3-pt function) of peaks is sensitive to the bispectrum of the underlying mass distribution, and the trispectrum, and the quadspectrum, etc.
 - Truncate the sum at the trispectrum: sensitivity to T_{NL} (~ f_{NL}^2) and $g_{NL}!$
 - This is the new effect that was missing in Sefusatti & Komatsu (2007).

• Plus 5-pt functions, etc...

 $+ \frac{\nu^4}{\sigma_{\rm T}^4} \left[\xi_R^{(2)}(x_{12}) \xi_R^{(2)}(x_{23}) + (\text{cyclic}) \right]$

 $+ \frac{\nu^4}{2\sigma_R^4} \left[\xi_R^{(4)}(\boldsymbol{x}_1, \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) + (\text{cyclic}) \right]$

New Bispectrum Formula $B_h(k_1, k_2, k_3)$ $=b_1^3 \left[B_R(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) + \frac{b_2}{b_1} \left\{ P_R(k_1) P_R(k_2) + (\text{cyclic}) \right\} \right]$ $+\frac{\delta_c}{2\sigma_P^2}\int \frac{d^3q}{(2\pi)^3}T_R(\boldsymbol{q},\boldsymbol{k}_1-\boldsymbol{q},\boldsymbol{k}_2,\boldsymbol{k}_3)+(\text{cyclic})\bigg].$

- First: bispectrum of the underlying mass distribution.
- Second: non-linear bias

Third: trispectrum of the underlying mass distribution.

Local Form Trispectrum $\Phi(\boldsymbol{x}) = \phi(\boldsymbol{x}) + f_{\rm NL} \left[\phi^2(\boldsymbol{x}) - \langle \phi^2 \rangle \right] + g_{\rm NL} \phi^3(\boldsymbol{x})$ $T_{\Phi}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4)$ $= 6g_{\rm NL} \left[P_{\phi}(k_1) P_{\phi}(k_2) P_{\phi}(k_3) + (\text{cyclic}) \right] + 2f_{\rm NL}^2$ × $[P_{\phi}(k_1)P_{\phi}(k_2) \{P_{\phi}(k_{13}) + P_{\phi}(k_{14})\} + (\text{cyclic})]$

- For general multi-field models, f_{NL}^2 can be more generic: often called T_{NL} .
- Exciting possibility for testing more about inflation!

Local Form Trispectrum $T_{\Phi}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4})$ $= 6g_{\mathrm{NL}} \left[P_{\phi}(k_{1}) P_{\phi}(k_{2}) P_{\phi}(k_{3}) + (\mathrm{cyclic}) \right] + 2f_{\mathrm{NL}}^{2}$ $\times \left[P_{\phi}(k_{1}) P_{\phi}(k_{2}) \left\{ P_{\phi}(k_{13}) + P_{\phi}(k_{14}) \right\} + (\mathrm{cyclic}) \right]$

gnl

$$\frac{\delta_{c}}{2\sigma_{R}^{2}} \int \frac{d^{3}q}{(2\pi)^{3}} \left[T_{R}(\boldsymbol{q}, \boldsymbol{k}_{1} - \boldsymbol{q}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}) + (\text{cyclic}) \right] \\
= g_{\text{NL}} B_{g_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}) + f_{\text{NL}}^{2} B_{f_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}), \\
B_{g_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}) = \frac{\delta_{c}}{2\sigma_{R}^{2}} \left[6\mathcal{M}_{R}(k_{2})\mathcal{M}_{R}(k_{3}) \left[P_{\phi}(k_{2}) + P_{\phi}(k_{3}) \right] \int \frac{d^{3}q}{(2\pi)^{3}} \mathcal{M}_{R}(q) \mathcal{M}_{R}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) P_{\phi}(q) P_{\phi}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) + (\text{cyclic}) \\
+ 12\mathcal{M}_{R}(k_{2})\mathcal{M}_{R}(k_{3}) P_{\phi}(k_{2}) P_{\phi}(k_{3}) \int \frac{d^{3}q}{(2\pi)^{3}} \mathcal{M}_{R}(q) \mathcal{M}_{R}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) P_{\phi}(q) + (\text{cyclic}) \right].$$
(20)

$$B_{f_{\rm NL}}^{nG}(k_1, k_2, k_3) \approx \frac{\delta_c}{2\sigma_R^2} \bigg[8\mathcal{M}_R(k_2)\mathcal{M}_R(k_3)P_{\phi}(k_1) \left[P_{\phi}(k_2) + P_{\phi}(k_3) \right] \int \frac{d^3q}{(2\pi)^3} \mathcal{M}_R(q)\mathcal{M}_R(|k_1 - q|)P_{\phi}(q) + (\text{cyclic}) \\ + 4\mathcal{M}_R(k_2)\mathcal{M}_R(k_3)P_{\phi}(k_2)P_{\phi}(k_3) \int \frac{d^3q}{(2\pi)^3} \mathcal{M}_R(q)\mathcal{M}_R(|k_1 - q|) \\ \times \left[P_{\phi}(|k_2 + q|) + P_{\phi}(|k_3 + q|) \right] + (\text{cyclic}) \bigg].$$
(2)

(21)

$$\frac{\delta_{c}}{2\sigma_{R}^{2}} \int \frac{d^{3}q}{(2\pi)^{3}} \left[T_{R}(\boldsymbol{q}, \boldsymbol{k}_{1} - \boldsymbol{q}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}) + (\text{cyclic}) \right] \\
= g_{\text{NL}} B_{g_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}) + f_{\text{NL}}^{2} B_{f_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}), \\
B_{g_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3}) = \frac{\delta_{c}}{2\sigma_{R}^{2}} \left[6\mathcal{M}_{R}(k_{2})\mathcal{M}_{R}(k_{3}) \left[P_{\phi}(k_{2}) + P_{\phi}(k_{3}) \right] \int \frac{d^{3}q}{(2\pi)^{3}} \mathcal{M}_{R}(q) \mathcal{M}_{R}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) P_{\phi}(q) P_{\phi}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) + (\text{cyclic}) \\
+ 12\mathcal{M}_{R}(k_{2})\mathcal{M}_{R}(k_{3}) P_{\phi}(k_{2}) P_{\phi}(k_{3}) \int \frac{d^{3}q}{(2\pi)^{3}} \mathcal{M}_{R}(q) \mathcal{M}_{R}(|\boldsymbol{k}_{1} - \boldsymbol{q}|) P_{\phi}(q) + (\text{cyclic}) \right].$$
(20)

$$B_{f_{\rm NL}}^{nG}(k_1, k_2, k_3) \approx \frac{\delta_c}{2\sigma_R^2} \bigg[8\mathcal{M}_R(k_2)\mathcal{M}_R(k_3)P_{\phi}(k_1) \left[P_{\phi}(k_2) + P_{\phi}(k_3) \right] \int \frac{d^3q}{(2\pi)^3} \mathcal{M}_R(q)\mathcal{M}_R(|k_1 - q|)P_{\phi}(q) + (\text{cyclic}) \\ + 4\mathcal{M}_R(k_2)\mathcal{M}_R(k_3)P_{\phi}(k_2)P_{\phi}(k_3) \int \frac{d^3q}{(2\pi)^3} \mathcal{M}_R(q)\mathcal{M}_R(|k_1 - q|) \underbrace{\text{Most Dominant}}_{\text{in the Squeezed Limit}} \\ \times \left[P_{\phi}(|k_2 + q|) + P_{\phi}(|k_3 + q|) \right] + (\text{cyclic}) \bigg].$$

$$(21)$$

Shape Results

- The primordial non-Gaussianity terms peak at the squeezed triangle.
- f_{NL} and g_{NL} terms have the same shape dependence:
 - For $k_1 = k_2 = \alpha k_3$, (f_{NL} term)~ α and (g_{NL} term)~ α
- $f_{NL}^2(T_{NL})$ is more sharply peaked at the squeezed:
 - $(f_{NL}^2 term) \sim \alpha^3$

Key Question

• Are g_{NL} or T_{NL} terms important?

Importance Ratios

I f_{NL}² dominates over f_{NL} term easily for f_{NL}

$$\frac{0}{L} \left(\frac{k}{0.01 \ h \ \mathrm{Mpc}^{-1}} \right)^2 (29)$$

$$\left(\frac{40}{f_{\rm NL}}\right)^2 \frac{g_{\rm NL}}{10^4},$$
 (30)

$$\frac{k}{h \,\mathrm{Mpc}^{-1}} \bigg)^2. \tag{31}$$

Redshift Dependence

$$B_{h}(k_{1}, k_{2}, k_{3}, z) = b_{1}^{3}(z)D^{4}(z) \left[B_{m}^{G}(k_{1}, k_{2}, k_{3}) + \frac{b_{2}(z)}{b_{1}(z)} \{ F_{m}^{2} + f_{\text{NL}}^{2} \frac{B_{f_{\text{NL}}^{2}}^{nG}(k_{1}, k_{2}, k_{3})}{D^{2}(z)} + g_{\text{NL}} \frac{B_{g_{\text{NL}}}^{nG}(k_{1}, k_{2}, k_{3})}{D^{2}(z)} \right]$$

- Primordial non-Gaussianity terms are more important at higher redshifts.
- The new trispectrum terms are even more important.

 $P_R(k_1)P_R(k_2) + (\text{cyclic}) + f_{\text{NL}} \frac{B_{f_{\text{NL}}}^{nG}(k_1, k_2, k_3)}{D(z)}$ $\left[\frac{k_2,k_3}{(z)}\right],$

Summary

- We have shown that the bispectrum of peaks is not only sensitive to the bispectrum of underlying matter density field, but also to the **trispectrum**.
- This gives us a chance of:
 - improving the limit on f_{NL} significantly, much better than previously recognized in Sefusatti & Komatsu,
 - measuring the next-to-leading order term, g_{NL}, and
 - testing more details of the physics of inflation! Discovery of $T_{NL} \neq f_{NL}^2$ would be very exciting...

Conference Summary

Past Decade and Coming Decade

Salopek-Bond (1990)

- We are following the bold paths taken by the giants
- Now, a lot of young people are contributing to push this field forward

δN (1996)

ths taken by the giants re contributing to push

Past Decade and Coming Decade

"I do not think that it is worth spending my time on non-Gaussianism."

Bond (Feb 2002, Toronto)

Salopek-Bond (1990)

- We are following the bold paths taken by the giants
- Now, a lot of young people are contributing to push this field forward

δN (1996)

ths taken by the giants re contributing to push

Past Decade and Coming Decade

"For someone who understands inflation, it was obvious that non-Gaussianity should be completely negligible." Sasaki (Oct 2008, Munich)

Salopek-Bond (1990)

- We are following the bold paths taken by the giants
- Now, a lot of young people are contributing to push this field forward

δN (1996)

ths taken by the giants re contributing to push

Multi-field Paradise

- Detection of the local-form f_{NL} is a smoking-gun for multi-field inflation.
- Very rich phenomenology, e.g., "preheating surprise"
 - Different observational consequences, especially for signatures on non-Gaussianity
 - Other signatures, e.g., tilt, tensor modes, isocurvature, are not as powerful or rich as non-Gaussianity
- Dick and Misao are now convinced ;-)

"Why Constant f_{NL}?" Dick Asked

 As many people have repeatedly shown during this workshop, a constant f_{NL} is merely one of MANY possibilities.

F_{NL}, f_{NL}, and F_{NL} again

- Pre- f_{NL} Era (<2001)
- Gaussianity Tests = "Blind Test" Mode
- Basically, people assumed that the form of non-Gaussianity was a free function, and tested whether the data were consistent with Gaussianity.
- No limits on physical parameters.
- In a sense, f_{NL} was a free function, F_{NL} .
F_{NL}, f_{NL}, and F_{NL} again

Free Function (Chaotic Situation)

 $f_{NL}^{local}, f_{NL}^{equilateral}, f_{NL}^{warm}, f_{NL}^{orthog}, etc$

Free Function Again?

- **f**_{NI} local • $\mathbf{R} = \mathbf{R}_{c} + \mathbf{A}^{*}\mathbf{X}^{2}$
- **f**_{NL} equilateral • $R = R_c + A^* \chi + B^* \chi^2$
- f_{NI}^{iso} • $R = R_c + A^*R_c^2 + B^*R_cS + C^*S^2$
- **f**_{NL}orthogonal • $R = R_c + A^* X_{very-non-gaussian}$
- f_{NL}(direction) • $F_{NL} = \exp[-(\chi - \chi_0)^2 / (2\sigma^2)]$
- $UNL^{(1)}, UNL^{(2)}, UNL^{(3)}$ • g_{NL}, T_{NL}

Bumps and wiggles

Wish List (as of April 2009)

Single-field Laboratory

• The "effective field theory of inflation" approach relates the observed bispectrum to the terms in the Lagrangian

$$S_{\pi} = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_{\rm Pl}^2 R - M_{\rm Pl}^2 \dot{H} \left(\dot{\pi}^2 - \frac{(\partial_i \pi)^2}{a^2} \right) + \right]$$

- "This is what people do for the accelerator experiment" (L. Senatore)
- A very strong motivation to look for the triangles other than the local form, e.g., equilateral from the ghost condensate
 - A new shape found! (f_{NL}^{orthogonal})

Observation: Current Status • From the optimal bispectrum of WMAP5 (Senatore)

- - $f_{NL}(local) = 38 \pm 21$ (68%CL)
 - $f_{NL}(equil) = 155 \pm 140 (68\% CL)$
 - $f_{NL}(ortho) = -149 \pm 110 (68\% CL)$
- From the large-scale structure (Seljak)
 - $f_{NL}(local) = 31^{+16}_{-27}$ (68%CL)
- From the Minkowski Functionals (Takahashi)
 - $f_{NL}(iso) = -5 \pm 10 (68\% CL)$

- f_{NI} local • $R = R_c + A^* \chi^2$
- **f**_{NL} equilateral • $R = R_c + A^* \chi + B^* \chi^2$
- f_{NI} iso • $R = R_c + A^*R_c^2 + B^*R_cS + C^*S^2$
- **f**_{NI} orthogonal • $R = R_c + A^* X_{very-non-gaussian}$
- f_{NL}(direction) • $F_{NL} = \exp[-(\chi - \chi_0)^2/(2\sigma^2)]$
- $UNL^{(1)}, UNL^{(2)}, UNL^{(3)}$ • g_{NL}, T_{NL}
 - Bumps and wiggles

Wish List (as of April 2009)

Trispectrum: Next Frontier

- A new phenomenon: many talks emphasized the importance of the trispectrum as a source of additional information on the physics of inflation.
- $T_{NL} \sim f_{NL}^2$; $T_{NL} \sim f_{NL}^{4/3}$; $T_{NL} \sim (isocurv.)^* f_{NL}^2$; $g_{NL} \sim f_{NL}$; $g_{NL} \sim f_{NL}^2$; or they are completely independent
- Shape dependence? (Squares from ghost condensate, diamonds and rectangles from multi-field, etc)

Playing with Quadrilaterals k₃ k₄ Ghost condensate / DBI? **k**₂ **K**3 k₄ kı

gNL BTW, how do we make plots of the trispectrum to see the shape dependence?

Beyond CMB: New Frontier

- Galaxy Power Spectrum!
 - $f_{NL}^{local} \sim I$ within reach
- Galaxy Bispectrum!
 - T_{NL} and g_{NL} can be probed
 - And other non-Gaussianity shapes
- Galaxy Trispectrum?
 - Worth doing?

Meet Mr. Seljak

- Conventional wisdom:
 - Cosmological measurements using the statistics of galaxies must, always, be affected by the **cosmic variance** and shot noise.
- Uros just showed that he can get rid of both: wow! Magic!

Don't Forget Real-world Issues

Messy second-order effects

- Non-linear evolution of CDM perturbations
- Light propagation at the second order (SW, ISW, lensing, etc)
- Crinkles in the surface of last scattering surface
 - Wandelt vs Senatore (reached an agreement?)
- Brute-force! All the products of first-order quantities

Don't Forget Real-world Issues

- Messy second-order effects: Goal
 - Include ALL of the second-order effects
 - including polarization
 - Is the second-order effect detectable at all?
 - What is the contamination for f_{NL}^{local} , f_{NL}^{equil} , etc?
 - I.e., if Planck measurement gives f_{NL}^{local}=10, is the primordial 11? 9? 9.5?

Discovery Space

- "Targeted search" of non-Gaussianity (e.g., f_{NL}) is powerful, but is often limited and restricted to one's prejudice (a.k.a. theories)
- The "blind search" approach should not be abandoned • Lessons from the past: cold spots, violation of
 - statistical isotropy, etc
- Planck data! The polarization data will help us clarify the situation enormously.
 - E.g., texture interpretation = lack of polarization around the Cold Spot

Summary of Summary

- Non-Gaussianity is a rapidly evolving, rich subject
- Unusually healthy interactions between observers and theorists: astronomers, cosmologists, phenomenologists, high-energy theorists
 - The list of the participants speaks for its diversity
 - Interdisciplinary efforts
- Lots of important contributions from young people
- Let our successes continue!

Now, let's pray:

• May Planck succeed!

Now, let's pray:

May the signal be there!

Let's thank the organizers

 Thank you Shinji and Lev for organizing such a wonderful workshop!

> And, see you in late June for the **IPMU Dark Energy Conference!** http://member.ipmu.jp/darkenergy09/welcome.html