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Let’s find Gravitational Waves (GW)!

But how? The detection method depends on the GW frequency.

 Laser interferometers on the ground: dec’a- tilo Hz (L/IGO, VIRGO, ..., ET)

 The wavelength ~ Astronomical Unit

* Pulsar timing arrays: nano Hz (EPTA, SKA)

» The wavelength ~ the size of the Milky Way % . "k

RS TS

Planck, theBIRD)

e Cosmic microwave background: atto Hz (WMAP

 The wavelength ~ billions of light years!




GWs from the early Universe are everywhere!

Campeti, EK, Poletti, Baccigalupi (2021)

We can measure it across 21 orders of magnitude in the GW frequency

Energy Density of GW
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Credit: WMAP Science Team

E“ie sky In various wavelengths
Visible -> Ne

r Infrared -> Far Infrared -> Submillimeter -> Microwave



Where did the CMB we see today come from?
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Credit: WMAP Science Team

The surface of “last scattering” by electrons

(Scattering generates polarisation')

Not shown: The cosmological redshift due to the expansion of the Universe



Credit: WMAP Science Team

The surface of “last scattering” by electrons

(Scattering generates polarisation')
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How do we “see" beyond this “wall”? Laws of physics! .



Before we talk about the GW,
let’s talk about the sound waves
(scalar modes)




Credit: WMAP Science Team

Gravitational Field Equations (Einstein’s Eq.)
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From “HORIZON”

Momentum Conser

Sound Waves!






Kosmische Miso-Suppe

* \When matter and radiation were hotter than 3000 K,
matter was completely ionised. The Universe was
filled with plasma, which behaves just like a soup

* Think about a Miso soup (iIf you know what it Is).
lmagine throwing Tofus into a Miso soup, while
changing the density of Miso

 And Imagine watching how ripples are created and
oropagate throughout the soup



Credit: WMAP Science Team







Data Analysis

e Decompose temperature fluctuations
N the sky Into a set of waves with
various wavelengtns

* Mlake a diagram showing the strength
of each wavelength: Power Spectrum
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Power Spectrum, Explained




The Royal Swedish Academy of Sciences has deaded fo award
the 2019 Nobel Prize in Physncs to '
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From “HORIZON”

Determine the composition
of the Universe

The Universe as a “hot soup”

 [he power spectrum allows us to
determine the composition of the
Universe, such as the density of
atoms, dark matter, and dark

energy.

* Definitive evidence for non-
baryonic nature of dark matter!

()




“Let’s give some impact to the beginning of this model”

 What gave the initial fluctuation to the cosmic hot soup?

Mukhanov & Chibisov (1981); Hawking (1982); Starobinsky (1982); Guth & Pi (1982);
Bardeen, Turner & Steinhardt (1983)

Leading ldea:

* Quantum mechanics at work in the early Universe

 “We all came from quantum fluctuations”

 But, how did the guantum fluctuation on the microscopic scale become
macroscopic over large distances?

* What is the missing link between the small and large scales?



Gravity + Quantum

= ['he origin of all the structures
we see In the Universe



Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation
Quantum r_nechanic_:al qucI:tuation /\/\/
—Xponential d
-Xpansion!

_— T

e Exponential expansion (inflation) stretches the wavelength of
quantum fluctuations to cosmological scales




What? How can we believe such
a statement?

Only the data will decide!



Finding Cosmic Inflation

What does inflation predict?

 Due to expansion of space, the distance between two points is
stretched in proportion to a(t).

* The Hubble expansion rate is defined as H(t) = a-1(da/dt). This has
the units of [1/time].

* In other words, a(t) = exp[ | H(t) dt ].

* During inflation, the distance between two points expands
exponentially. This means H(t) ~ constant, which gives a(t) ~ exp(Ht).

 However, inflation must end. This means that H(t) is a slowly
decreasing function of time.

How can we test this?

27



Mukhanov & Chibisov (1981); Hawking (1982); Starobinsky (1982); Guth & Pi (1982);
Bardeen, Turner & Steinhardt (1983)

Finding Cosmic Inflation

What does inflation predict for the density fluctuation?

* During inflation, the density fluctuation is produced quantum
mechanically.

* According to Quantum Mechanics during inflation,

* The strength of density fluctuation is proportional to H

« THE KEY: The earlier the fluctuations are generated, the more its wavelength
IS stretched, and thus the bigger the angles they subtend in the sky. Because
H(t) is a decreasing function of time, inflation predicts that the amplitude
of fluctuations on large angular scales is slightly larger than that on small

angular scales!

28



Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves

WMAP Collaboration
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Amplitude of Waves
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Amplitude of Waves
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Amplitude of Waves
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Fraction of the Number of Pixels
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distribution of
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-

-3 -2 - 0 1 2 3 4
[Values of Temperatures in the Sky Minus 2.725 K] / [Root Mean Square]




Fraction of the Number of Pixels
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So, have we found inflation?

A lot of evidence In support of inflation exist already.

» Single-field slow-roll inflation looks very good:
v * ns<1
v/« Gaussian fluctuations
v/« Adiabatic fluctuations [no time to explain this today]
v+ Super-horizon fluctuations [no time to explain this today]
 What more do we want”? Primordial gravitational waves

 Why more evidence? Because “extraordinary claim requires extraordinary
evidence” (Carl Sagan)

41



Let’s talk about the GW
(tensor modes)



Gravitational waves are coming towards you!
To visualise the waves, watch motion of test particles.



Gravitational waves are coming towards you!
To visualise the waves, watch motion of test particles.




Distance between two points

e |n Cartesian coordinates, the distance between two points In
Euclidean space is

ds® = dx* + dy® + dz-

* Jo Include the isotropic expansion of space,

ds* =|a®(t)|(dz* + dy* + dz*)

X



Distortion In space

 Compact notation using Krcneckers delta symbol:

ds* = a*(t) 5 25 dx'dax?

=1 7= x = (z,y,2)
6” =1 for | |—j
Oij = 0 otherwise

x2

* o Include distortion In space

0> Z z (8i5 +|his) dec’ dac?

1=19=1

) & Distortion in space!



Four conditions for gravitational waves

 The gravitational wave shall be transverse.

* The direction of distortion is perpendicular to the propagation direction —

2SS £

3 ® 3 /. 3
® ® ® ® ®
Z o o 14 gy
v i i v i

IV 3 conditions for h;




Four conditions for gravitational waves

 The gravitational wave shall not change the area

* The determinant of §;+hjj is 1

3 3 . .
d82 — a? Z Z (57,3 —+ hf,;j)daizdaij
i=14=1

3
Thus, Y hi=0 1 condition for hj
1=1 ®




6 - 4 = 2 degrees of freedom for GW

We call them “plus” and “cross” modes

 The symmetric matrix hjjhas 6 components, but there are 4 conditions. Thus, we
have two degrees of freedom.

* |f the GW propagates in the x3=z axis, non-vanishing components of hj are

h_|_ hx O
0 0 0

49



How to detect GW?

Laser interferometer technique, used by LIGO and VIRGO

Mirror

o ® o
i Beam splitter ¢
| 7 .

: Mirror -
:\ ¢ ¢
o o ©

_ el NoSignal

50

' Mirror

The wavelength of GW detectable by
this method is the size of Earth
' (a few thousand km).
How do we detect GW with
billions of light-years’s wavelength?

Beam splitter Py ®



Sachs & Wolfe (1967)

Detecting GW by CMB

Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

C

Isotropic radiation field (CMB)

h




Sachs & Wolfe (1967)

Detecting GW by CMB

Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB) Isotropic radiation field (CMB)

SR | :

Electron




Polnarev (1985)

Detecting GW by CMB ~olarisation

Quadrupole temperature anisotropy scattered by an electron

Isotropic radiation field (CMB)

Q o
= L @
® e @ ® o ° @ o
L L
.. ]'L_|_ .. O hX ®
¢ e o ¢ @ @ ¢ T 9
@ L

Isotropic radiation field (CMB)

Electron



Credit: TALEX
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Credit: TALEX




Physics of CMB Polarisation

Necessary and sufficient condition: Scattering and Quadrupole Anisotropy

Quadrupole
Anisotropy
Isotropy
1 Y
1 ~
Thomson Thom.spn
) g > Scattering . > Scattering
Linear
No Polarization Polarization

Credit : Wayne Hu B




Credit;: ESA

Temperature (smoothed)



Credit;: ESA
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Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky & Stebbins (1997)

E- and B-mode decomposition

Concept deflned |n Fourler space

Emode
| -1 L
/ | Direction of the Fourier
| wavenumber vector
/ VRN \ NN
*% B mode

* E-mode : Polarisation directions are parallel or perpendicular to the wavenumber direction

 B-mode : Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction
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Seljak & Zaldarriaga (1997); Kamionkowski, Kosowsky & Stebbins (1997)

Parity Flip

- E- mode remalns the same, whereas B-mode changes the sign

E mode :f * [wo-point correlation functions invariant
! L o | under the parity flip are

' A . 2 5(2) NCOEE
,f / YAVENAN \ NN s S < L p > ( 7‘-) D ( ) 14

sbom 3 |

- - \ (TeE}) = (T Eg) = (2m)26 (6 — £)CFE

;}f e The other combinations <TB> and <EB> are not

"~ / VAVEEN \ invariant under the parity flip.

* [Side Note] We can use these combinations to

\ Y
“’l S
&

o]

Sane probe parity-violating physics (e.g., axions)

60



10* | | | |

" i
»* \*.{ g %,
Power Spectra g T
p _ Temperature anisotropy
Where are we? What is next? 2l | (sound waves)
5 % 5%
X gi‘%‘ i
= 4’ %15 * i
+ The temperature and polarisation & / E-mode -
power spectra originating from the g~ 10°n /.%w-g.%' (sound waves)
scalar (density) fluctuation have = g
been measured. = I/ [ g 4
+ ; :
* The next quest: B-mode power  — } }f NS B J I .
spectrum from the primordial GW! 107 "} -mode (lensing)
| Planck e
iis BICEP2 /Keck
B-mode - J2 S/PTTDCOI ¥
(Primordial GW) POLARBEAR A
107* | | | |

10 100 000 1000 15002000

61
|



Tensor-to-scalar Ratio

(hizh'7)
(G

e \We really want to find this! The current upper bound is
r<0.036 [95%CL; BICEP2/Keck Array Collaboration (2021)]

7



Tensor—to—Scalar Ratio (r)
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Planck Collaboration (2015); BICEP2/Keck Array Collaboration (2016)
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Planck Collaboration (2015); BICEP2/Keck Array Collaboration (2016)
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Experimental Landscape



CMB-S4 CMB Stages

Next Generation CMB Experiment

, . . —— Space based experiments
1 0‘1 T L L S Stage-| — = 100 detectors
[ ' ' Stage-Il — = 1,000 detectors

Stage-Ill — = 10,000 detectors
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Figure by Clem Pryke for 2013 Snowmass documents



Advanced Atacama ‘ South Pole Telescope “3G” ‘
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BICEP/Keck Array CLASS

The Simons Array
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Bringing all together:
US-led CMB Stage IV
Late 2020s (~$600M
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Balloons!

“Almost space”
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LiteBIRD Collaboration
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Tensor—to—Scalar Ratio (r)

—
(—

0.03

0.01

0.003

0.001

3107

TTee— . .
LiteBIRD Collaboration,
o ! LiteBIRD |
B LiteBIRD/Planck
BK15/Planck

m’¢~  47< N, < 57
we  47<N,<57
ﬂ10/3 623 47< N, <57
R?2 42<N,<52

Poincaré disks

™

LiteBIRD’s Expected Constraints
(If we find a signal!)

®  Higgs N, =57

exact scale-invariance

0955 0960 0965 0970 0975 0980 098 0990 0995 1.00

Primordial Tilt (ny)



Tensor—to—Scalar Ratio (r)

—
(—

0.03

0.01

0.003

0.001

3 x10-4

] LiteBIRD

LiteBIRD’s Expected Const BK15/Planck

———{If we do not find a signal
—_ /
~MP

V,, tanh?(¢/2M)
BN 9P 47< N <57
ce  R%?  43< N, <53
® Higgs N,=57

0955 0960 0965 0970 0975 0980 0985 0990 0.995

Primordial Tilt (n,)

B LiteBIRD/Planck

LiteBIRD Collaboration,

exact scale-invariance

1.00




Campeti, EK, Poletti, Baccigalupi (2021)
But let’s recall again: not just CMB!

We can measure it across 21 orders of magnitude in the GW frequency
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Summary

Towards finding our origins

e The Quest So Far:

* There is very good evidence that we all came from the quantum fluctuation
In the early Universe, generated during the period of cosmic inflation.

e The New Quest:

* Discovery of the primordial gravitational wave with the wavelength of
billions of light years gives definitive evidence for inflation.

 Hoping to find the first evidence from ground-based and balloon-borne
experiments within the next 10 years.

* Then, the definitive measurement will come from LiteBIRD in early 2030s.
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