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This talk is based on...

® Squeezed-limit bispectrum
® Ganc & Komatsu, JCAP, 12,009 (2010)

® Non-Bunch-Davies vacuum and CMB

® Ganc,PRD 84,063514 (2011)

® Scale-dependent bias and p-distortion

® Ganc & Komatsu, arXiv:1204.424 1



Does this plot prove inflation!
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Motivation

® Can we falsify inflation!?



CC°
|

Falsifying “inflation™

® We still need inflation to explain the flatness problem!

® (Homogeneity problem can be explained by a bubble
nucleation.)

® However, the observed fluctuations may come from
different sources.

® 50, what | ask is,""can we rule out inflation as a
mechanism for generating the observed fluctuations?”



First Question:

® Can we falsify single-field inflation!?

* will not be talking about multi-field inflation today:

for potentially ruling out multi-field inflation, see
Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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An Easy One:Adiabaticity

® Single-field inflation = One degree of freedom.

® Matter and radiation fluctuations originate from a
single source.

0pc  30p

SC‘,)/ — — i =0
pe  4py
Cold Photon

Dark Matter

* A factor of 3/4 comes from the fact that, in thermal
equilibrium, pc.~py** 7



Komatsu et al. (201 1)

Non-adiabatic Fluctuations

® Detection of non-adiabatic fluctuations immediately
rule out single-field inflation models.

The current CMB data are consistent with adiabatic
fluctuations:

[6pc/ pe — 30p, /(4py) |
%[810(?//06 T 35/0)//(4/0)/)]

<0.09 (95% CL)
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Tensor—to—Scalar Ratio (r)
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. . . Komatsu et al. (201 1)
Single-field inflation looks good

(in 2-point function)
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S0, let’s use 3-point function

Ks

K|

® Three-point function (bispectrum) K>

® Br(ki, k> ks)
= <CkICk2Ck3> = (amplitude) x (217)30 (k| +ka+k3)b(ki,ka,k3)

model-dependent function
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(a) squeezed triangle (b) elongated triangle (c) folded triangle
(k =k >>k,) (k,=k_+k,) (k, =2k, =2k,)

MOST IMPORTANT, for falsifying

single-field inflation
(d) isosceles triangle (e) equilateral triangle

(k >k =k ) (k,=k =k )




Curvature Perturbation

® |n the gauge where the energy density is uniform,

0p=0, the metric on super-horizon scales (k<<aH) is
written as

ds? = —N?(x,t)dt? + a?(t)e2cxtdx?
® We shall call T the “curvature perturbation.”

® This quantity is independent of time, {(x), on super-
horizon scales for single-field models.

® The lapse function, N(x,t), can be found from the

Hamiltonian constraint.
12



Action

® Einstein’s gravity + a canonical scalar field:

S=(1/2) [ d*x+/—g [R—(0D)>-2V(P)]




Maldacena (2003)
Quantum-mechanical

Computation of the Bispectrum

(D)) = —i ./;(1—ie) - dt'{0|[¢3 (©), Hitt")]|0)

2 »*
4 (2 . 0“x = —.QC
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Initial Vacuum State

Ck(t) = ug(t)ax + uy (t)aT—k

® Bunch-Davies vacuum, ak|0>=0 with

[N: conformal time]

15



Br(ki,k2,ks3)
= <CkICk2Ck3> = (amplitude) x (277)30 (k| +ka+k3)b(ki,ka,k3)

e e 1
M4z [[:(2%;)

12 k2 |2
§:3 ﬁ 1}:3.12.2 me

LF]

b(ki,ka,k3)= = H

,

Complicated? But... 6



. S Maldacena (2003)
Taking the squeezed limit

(k3<<k|=ky) %

® Br(ki,k>ks)
= <CkICk2Ck3> = (amplitude) x (277)30 (k| +ka+k3)b(ki,ka,k3)

; H4 1
zH (Qk3

)
¢*p* z Px . £
k3 k3

2k,?3
17

® b(kiki,ks->0)=

2k,?3



. S Maldacena (2003)
Taking the squeezed limit

(k3<<k;=ka) %

o Br(kkaks)
= <Ck1Cialk3> = (amplitude) (21T)36(k|+k2+k3)b(|<|,|<2,|<3)

4
>0)= :
® b(kiki,ks->0)= ¢4 M4 ¢* D ]|(|3|(3

= I -Ns
= (I-ns)Pg(ki)Pg(ks)
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Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by Ry

——e—

® Br(kiki,k3->0) = (l-ns) x (21T)36(k|+k2+k3) X P§(|(|)P7;(|:3)

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 19



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by _ s )

o Be(kiki,k3->0) = (I1-n¢) x (217)38 (ki +ka+ks) x Pe(ki)Pe(ks)
| ) Bk b &)

£ _
5 ‘}NL - @(ﬁ)%(ﬁz){'%(&)@/h}‘f@‘({é}%w

e eresre——.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 20



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by _ - .

¢ Br(ki ki ks3->0) = (I-ns) x (217)30(k1+katk3) x P§(|(|)P§(|:3)

® Therefore, all single-field models predict fne=(5/12)(1—ns).

® With the current limit ns=0.96, fnL is predicted to be 0.017.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 2



Limits on fnL

é % - (—% (ﬁu é}z I%S ) g
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When fnL is independent of wavenumbers,
it is called the “local type.”



Komatsu et al. (201 1)

Limits on fnL
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o far =32 % 21 (68%C.L.) from WMAP 7-year data

® Planck’s CMB data is expected to yield Afni=5.

® fuL =27 = 16 (68%C.L.) from WMAP 7-year data
combined with the limit from the large-scale

structure (by Slosar et al. 2008)

® Future large-scale structure data are expected to
yield Afn=1.



Understanding the heorem

® First, the squeezed triangle correlates one very long-
wavelength mode, k. (=k3), to two shorter wavelength

modes, ks (=k|=k2):

® <CkiCioli3> = <(TCks)*Cuk>

® Then, the question is:“why should (Cks)? ever care
about Ty ?”

® The theorem says,“it doesn’t care, if Ck is exactly

scale invariant.’
24



CkL rescales coordinates

Separated by more than H-!

® The long-wavelength
curvature perturbation
rescales the spatial
coordinates (or changes the
expansion factor) within a
given Hubble patch:
® ds2=—dt2+[a(t)]2e?5(dx)?

sz
left the horizon already\




CkL rescales coordinates

Separated by more than H-!

® Now, let’s put small-scale
perturbations in.

® Q.How would the
conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation?

CkL
left the horizon already\ 26




CkL rescales coordinates

Separated by more than H-!

e Q.How would the

conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation!?

® A.No change, if Ck is scale-
invariant. In this case, no
correlation between Ty and
(Cks)? would arise.

sz
left the horizon already\




Creminelli & Zaldarriaga (2004); Cheung et al. (2008)
Real-space Proof

® The 2-point correlation function of short-wavelength
modes, E=<TCs(X)Ts(y)>, within a given Hubble patch
can be written in terms of its vacuum expectation value
(in the absence of C1), &, as:

® &= &o(|x-yl|) + CL[d&o(|x~y]|)/dTL]
® &u = &o(|x—y|) + T [dEo(|x—y|)/dIn|x-y]]
® &= &o(|x=yl) + T (I-ns)&o(|x=y])

3-pt func. = <(Gs)?*CL> = <& .C>
= (1-n5)So(|x-y|)<T?>




This is great, but...

® The proof relies on the following Taylor expansion:

® <Gs(x)Ts(y)>cL = <Ts(X)Ts(y)>o + Tu [d<Ts(X)Ts(y)>o/dC]

® Perhaps it is interesting to show this explicitly using the in-in
formalism.

® Such a calculation would shed light on the limitation of the
above Taylor expansion.

® |ndeed it did - we found a non-trivial “counter-
example” (more later) 20



Ganc & Komatsu, JCAP, 12,009 (2010)

An ldea

® How can we use the in-in formalism to compute the
two-point function of short modes, given that there is a

long mode, <Gs(X)Ts(y)>z?

® Here it is!

3/

(@G@),=-i [ ar(o]icé@.H o)

—(1—12€)

30



Ganc & Komatsu, JCAP, 12,009 (2010)

Long-short Split of H
GE=—i [ ar(o]icd. By

—(1—12€) ¢

® |nserting C=C+Cs into the cubic action of a scalar
field, and retain terms that have one T, and two Tgs's.

3 ki o 1 @8 wi s Tl OF
Sl(nt) _/ Zl;']:f (——() — _A> a%gLCé e T () (]gL(OCS) o

a3(s0;Cs0;0™ %+

4 H* 16 HS 4 HA '2H1
1 O() 3 O 1l -1 ()() 1 C)’) :

: 0;0;0™ (s 0;0;0™ 2—2%a® i St < 7 T
leﬂfj s *Cs ¢+ 739 CL— PN E (SGS
6Ly

o f(g)~_ : 31
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Ganc & Komatsu, JCAP, 12,009 (2010)

Result

L2
¢O 1 ¢0
<CS,k1 CS,k2>Ck3 — CL,kl +ko K ¢OH 5 H2 P(kl)
® where
‘ 7 168 ., . 164 . ..
¢ = qug, (1) /_x(l_ie) dn _2 719 Uk, (n) + > 774° Tug; (1n)+

19 5 Ho i

o5 3d [ O Los Y 4% .

+2—a’— | = - ——= | ug, (n)ur, (n)| + c.c.
H= dt \ ¢gH 2 H? : ;

—
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Result

® Although this expression looks nothing like (I—ns)P(ki) Ty,
we have verified that it leads to the known consistency
relation for (i) slow-roll inflation, and (ii) power-law inflation.

® But, there was a curious case —Alexei Starobinsky’s exact
ns=| model.

® [f the theorem holds, we should get a vanishing
bispectrum in the squeezed limit.

33



Starobinsky (2005)

Starobinsky’s Model

® The famous Mukhanov-Sasaki equation for the mode

function is

12, 2

d“u;. i LB

=k kP — ——— | u, =0
dan

where

aQ 1 22z 2

2 — ——  e¢]he scale-invariance results when YR = i

So, let’s write Zz=B/n s



Starobinsky’s Potential

3272G* B2
3

V(9)

\ “/47I'G¢

® This potential is a one-parameter family; this particular
example shows the case where inflation lasts very long:

Pend -~ X 35



Ganc & Komatsu, JCAP, 12,009 (2010)

Result

1 2
<C‘Sak1 Cs,k2>Ck3 — CLak1+k24P(k1)(klnstart)Qe 5> Pend

® It does not vanish!

® But, it approaches zero when Q¢4 is large, meaning the
duration of inflation is very long.

® |n other words, this is a condition that the longest
wavelength that we observe, ks, is far
outside the horizon.

® |n this limit, the bispectrum approaches zero.



Initial Vacuum State!

® VWhat we learned so far:

® The squeezed-limit bispectrum is proportional to
(1-ns)P(ki)P(k3), provided that Cis is far outside the
horizon when k| crosses the horizon.

® What if the state that Cks sees is not a Bunch-Davies
vacuum, but something else?

® The exact squeezed limit (k3->0) should still obey
the consistency relation, but perhaps something
happens when k3/k; is small but finite. =



Temperature Power Spectrum
((e+1)C,/2m [uK?]

How squeezed!
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| Keisler et al. (201 1)

o With CMB, we can measure primordial modes in |=2—
3000.Therefore, k3/k; can be as small as 1/1500.
38



How squeezed!
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Matter Power Spectrum
P(k,z=0) [Mpc%]
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103 102 10~!
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109

\ Hlozek et al. (201 1)

® With large-scale structure, we can measure primordial
modes in k=107~ Mpc~'.Therefore, k3/k; can be as_,

small as 1/1000.
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Back to in-in

(¢ (")) = —z’/ dt’(0[[¢°(¢*), H(t')]]|0)

to

4 7
R0, X pewe e  w 1 .
Be(k1, ko, k3) = 21 776 Z (/7) Uk, () Uk, (7)Uk, (77) / 611'17"11.’2 &1 k?_'u'ZB + c.c.

w 0

® The Bunch-Davies vacuum: u’ ~ ne " (positive frequency mode)

® The integral yields |/(ki+k2+ks3) -> 1/(2k)) in the squeezed limit

41



Back to in-in

(¢ (")) = —z‘/ dt'(0[[¢(¢*), Hi(t')][0)

to

¢
B((kfl, ]{32, /{33) = 21- 5

= (3

; 7

negative frequency

® Non-Bunch-Davies vacuum: u’ ~ N(Ake " + Bye*'M) mode

2 k.

® The integral yields 1/(ki—ka*k3), peaking in the folded limit _ «
Chen et al. (2007); Holman & Tolley (2008)

® The integral yields 1/(ki—katks) -> 1/(2ks) in the squeezed limit

Enhanced by k,/ks: this can be a big factor!
Agullo & Parker (201 1)



Agullo & Parker (2011)
How about the consistency

relation?
B(k1, ko, k3) | =  R(k1)R(k3) (1 —ns)

ks/k <<I
2
Ay~ et

‘ E

® VWhen k3 is far outside the horizon at the onset of

inflation, No (whatever that means), k3no->0, and thus
the above additional term vanishes.

® The consistency relation is restored. 43



An interesting possibility:

® What if k3o = O(I)?

® The squeezed bispectrum receives an enhancement of
order &ki/ks, which can be sizable.

® Most importantly, the bispectrum grows faster
than the local-form toward k3/k; -> 0!

® Br(kikaks) ~ I/ks? [Local Form]
® Br(kjkyks) ~ 1/k3* [non-Bunch-Davies]

® This has an observational consequence — particularly a

scale-dependent bias and distortion of CMB spectrum.



Power Spectrum of Galaxies

® (Galaxies do not trace the underlying matter density
fluctuations perfectly. They are biased tracers.

® “Bias” is operationally defined as

® bgalaxyz(k) — <|6galaxy,k|2> / <|6matter,k|2>

45



Density-C Relation

® |t is given by the Poisson equation:
2k?

8m L) —
k(2) SHZG,

CkT(k)D(k, z)

T(k)->1 for k<<10~2 Mpc™'
T(k)->(Ink)?/k* for k>>10-? Mpc~!

D(k,z)=1/(1+z) during the matter-dominated era

Positive Tk -> positive dm!

46



Galaxy clustering modified
by the squeezed limit "&=>0

k
2

e —

K
1

® The existence of long-wavelength T changes the small-
scale power of Om.

® A positive long-wavelength C -> more power
on small scales.

® More power on small scales -> more galaxies formed.

47




Dalal et al. (2008); Matarrese & Verde (2008); Desjacques et al. (201 1)

Scale- dependent Bias

Fr(k) [ (b, — 15, Mr(k)~k? for k<<I/R
Mr(k) | ] and small for k>>1/R

1 d*k : : .
Fr(k) ® 7575 k)/ ; LM% (k) Be (k. by k) R is the linear size
orFe(k) ) (2r) of dark matter halos

Ab(k, R) = 2

® A rule-of-thumb: = / (;i%/;

P (k)M (k)

® For B(ki,ka,ks) ~ 1/ksP, the scale-dependence of the
halo bias is given by b(k) ~ 1/kP-!

® For a local-form (p=3), it goes like b(k)~ I/k?
® For a non-Bunch-Davies vacuum (p=4), would it go like

b(k)~1/k3?

48



Ganc & Komatsu (2012)

- It does!
L TY
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Ganc, PRD 84,063514 (201 1); Ganc & Komatsu (2012)

CMB Bispectrum

® The expected contribution to fnL as measured by the
CMB bispectrum is typically fne=8(€/0.01).

® A lot bigger than (5/12)(1—ns), and could be
detectable with Planck.

® Note that this does not mean a violation of the single-
field consistency condition, which is valid in the exact
squeezed limit, k3->0.

® VVe have an enhanced bispectrum in the squeezed
configuration where k3/k; is small but finite.

50



IO_17E T T T T1 T T T T 1 T T T ||||||E
N 10" # -
T - * Rocket (COBRA) K -
e - = Satellite (COBE/FIRAS) » -
€L _
NE o-1eL_ ® Ground-based A
= -+ Balloon-borne " -
; - © O -
~ B % N
% 107 = ® _
o ¢ - E
o - ¢ Using the distortion of the thermal|-
_CCD l ¢ spectrum of CMB, we can reach |
—21 . _

= Y- T ks/k1 as small as 10-8! (Pajer &

m # 7 Zaldarriaga 2012)

22 _ ? “ (plot from Samtleben et al. 2007)
L 41 [ I I| I [ I I| I I [ I I| I I I O

3m 30cm Wavelength 3amm 0.3mm %



Damping of Acoustic VVaves

) .
O ! Exponential
O - :
O _ | Damping
o ..
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4
® Energy stored in the acoustic waves must go

somewhere -> heating of CMB photons -> distortion of
the thermal spectrum >



Chemical potential from
energy Injection

® Suppose that some energy, AE, is injected into the
cosmic plasma during the radiation dominated era.

® What happens?! The thermal spectrum of CMB should
be distorted!

53



Chemical potential from
energy Injection

® For z>zi=2x10° double Compton scattering, e +Y->e"
+2Y, is effective, erasing the distortion of the thermal
spectrum of CMB.

® Black-body spectrum is restored.

54



Chemical potential from
energy Injection

® For z<z=2x10° double Compton scattering, e +Y->e"
+2Y, freezes out.

® However, the elastic scattering, e +Yy->e +Y, remains
effective [until Z¢&=5x10%]

® Black-body spectrum is not restored, but the spectrum
relaxes to a Bose-Einstein spectrum with a non-zero

chemical potential, Y, for z¢<z<z;:

1 |
n(V)_ ehl//(kBT) | ; eh’//(kBT)—F“ — 1

99



Chemical potential from

energy Injection

1 1

n(V)= ehl//(kBT) | ; eh’//(kBT)—F“ — 1

® Energy density is added to the plasma (U<<I):
® aT*+ AE/V = a(T)*(I-I.11p)

® Number density is conserved (U<<I):
® bT3 =p(T)(I-1.37p)

® Solving for U gives

® p=1.4[AE/(aT*V)]=1.4(AE/E)

56



How much energy!?

® Only 1/3 of the total energy stored in the acoustic
wave during radiation era is used to heat CMB (thus
distorting the CMB spectrum) (papers by Jens Chluba):

o Q = (1/3)(9/4)cs*py(dy)* = (1/4)py(Oy)?
o L=Il.4)dz[(dQ/dz)/py]
=(1.4/4)[(0v)*(zi)—(0v)*(z1)]

® where z=2x10° and z=5x10*

S7



Bottom Line

® Therefore, the chemical potential is generated by
the photon density perturbation squared.

® At what scale? The diffusion damping occurs at
the mean free path of photons. In terms of the
wavenumber, it is given by:

kp ~ 130 [(1 + 2)/10°]%/? Mpc™?
kp(z) ~ 12000 Mpc™t : kp(zf) ~ 46 Mpc™*

It’s a very small scale!
(compared to the large-scale structure, k~1 Mpc-)



U-distortion modified by

(a) squeezed triangle

the squeezed limit "5

k
2

e —

K
® The existence of long-wavelength T changes the small-
scale power of Oy.

® A positive long-wavelength T -> more power
on small scales.

® More power on small scales -> more H-distortion.

(Pajer & Zaldarriaga 2012)
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L- I cross-correlation

® |n real space:
® Y = (1.4/4)[(dy)*(z)—(0v)*(z7)] at ki~O(10%)-O(10%)

o AT/T =—(1/5)T at k3~O(10™) [in the Sachs-Wolfe
limit]

® Correlating these will probe the bispectrum in the
squeezed configuration with ks3/k;=0(107%)-O(10-?)!!

60



More exact treatment

® Going to harmonic space:

® AT/T(n)=Za|mTY|m(n); M (n)=Za|m“Y|m(n)

127, / d’k -+ [gn(k) contains info about
i S [ x (1. gTi

. a m = [ : C k g k Y'm k . . o
l 5 (=) (27r)3£ 71(8) Yim (%) the acoustic oscillation]

A

L [ By, k
¢ a’f’m :187T(_Z)l/ 1 2Y2771(k)C(k1)<(k2)W (_> X

(27T)6 S — k’s
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Pajer & Zaldarriaga (2012); Ganc & Komatsu (2012)

U-1 cross-power spectrum

ul™ 27 - 2 i —21{’2/1{’2( )- .
C! k2dk, |e—2ki/kD(:

207[-3 4 Zf

></ K2dk W (k )Bg(kl ko, k)ji(krr)gri (k)
O S

® Here, the integral is dominated by k;=ka~kp (which is
big) and k=l/r. (which is small because r.=14000 Mpc)

® Very squeezed limit bispectrum

62



LU- T cross-correlation

Local-form Result

- = f1]] transfer function

| rme— Sachs—Wolte approx.

I T T T T I T T T T I

Full calculation (our result)
[sign changes]

-~
~.-
------------------------------------------------------------------------------------

Sachs-Wolfe approximation (Pajer&ZaIdarrlaga)
[always negatlve]
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Signal-to-noise / fnL

Ganc & Komatsu (2012)
Can we detect the local-

form bispectrum?

0.00060 ,
0.000555_ ---------------------- Sachs-Wolfe approximation _
0.00050 - o7 Full calculation (infinite resolution) -

0.00045 :_ ."I /—5

Full calculation (PIXIE’s resolution)

z

<
~

0.00040}
A |z "

0.00035 !
0.00030 ;

® No, unless fnL>>2300
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Ganc & Komatsu (2012)
But, a modified initial state

enhances the S|gnal

3 S e
6 | “maximum S|gna|
C 100
i ; -
O 5 ‘ = e Pt e . _
b B more realistic estimate -
_I % Tz f |
< - u
g.o si- " / — Or~Kn,
i/_) , —  @r=const,max
b ¢ & ¢ ¢ 8§ % # % © § © © € © 4§ € #£ @ L Y L € @ &
0.0 0.1 0.2 0.5
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Future VVork

® All we did was to impose the following mode function
at a finite past:
® = . [k(1+ikn)e N + By (1-ikn)e*n]
< Qb \/ﬁ < <

® with the condition: Bk -> 0 for k->00

® However, it is desirable to construct an explicit model

which will give explicit forms of Ok and Bk, so that we
do not need to put an arbitrary model function at an
arbitrary time by hand.
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New probes of initial state

of quantum fluctuations!

Summary

® A more insight into the single-field consistency relation

for the squeezed-limit bispectrum using in-in formalism.

Non-Bunch-Davies vacuum can give an enhanced
bispectrum in the k3/k;<<I limit, yielding a distinct form
of the scale-dependent bias.

The U-type distortion of the CMB spectrum becomes

anisotropic, and it can be detected by correlating M on
the sky with the temperature anisotropy.

Squeezed-limit bispectrum
= Test of single-field inflation
& initial state of quantum fluctuations
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