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This talk is based on...

Squeezed-limit bispectrum
® Ganc & Komatsu, JCAP, 12,009 (2010)

Non-Bunch-Davies vacuum

® Ganc,PRD 84,063514 (2011)

Scale-dependent bias [and U-distortion]
® Ganc & Komatsu, in preparation

Multi-field consistency relation 2

® Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)



Motivation

® Can we falsify inflation!?
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Falsifying “inflation™

® We still need inflation to explain the flatness problem!

® (Homogeneity problem can be explained by a bubble
nucleation.)

® However, the observed fluctuations may come from
different sources.

® 50, what | ask is,""can we rule out inflation as a
mechanism for generating the observed fluctuations?”



First Question:

® Can we falsify single=field inflation!?



An Easy One:Adiabaticity

® Single-field inflation = One degree of freedom.

® Matter and radiation fluctuations originate from a
single source.

0pc  30p

SC‘,)/ — — i =0
pe  4py
Cold Photon

Dark Matter

* A factor of 3/4 comes from the fact that, in thermal
equilibrium, pc~(1+2z)3 and py~(l1+2)*.



Komatsu et al. (201 1)

Non-adiabatic Fluctuations

® Detection of non-adiabatic fluctuations immediately
rule out single-field inflation models.

The data are consistent with adiabatic fluctuations:

100/ pe — 360y /(4py) |
5[80c/ pe +38p, /(4py)]

<0.09 (95% CL)
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. . . Komatsu et al. (201 1)
Single-field inflation looks good

(in 2-point function)
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S0, let’s use 3-point function

® Three-point function!

® Br(ki, k> ks)
= <CkICk2Ck3> = (amplitude) x (217)30 (k| +ka+k3)b(ki,ka,k3)

model-dependent function



(a) squeezed triangle (b) elongated triangle (c) folded triangle
(k =k >>k,) (k,=k_+k,) (k, =2k, =2k,)

MOST IMPORTANT, for falsifying

single-field inflation
(d) isosceles triangle (e) equilateral triangle

(k >k =k ) (k,=k =k )




Curvature Perturbation

® |n the gauge where the energy density is uniform,

0 p=0, the metric on super-horizon scales (k<<aH) is
written as

ds? = —N?(x,t)dt? + a?(t)e2cxtdx?
® We shall call T the “curvature perturbation.”

® This quantity is independent of time, {(x), on super-
horizon scales for single-field models.

® The lapse function, N(x,t), can be found from the

Hamiltonian constraint.
11



Action

® Einstein’s gravity + a canonical scalar field:

S=(1/2) [ d*x+/—g [R—(0D)>-2V(P)]




Maldacena (2003)
Quantum-mechanical

Computation of the Bispectrum

(D)) = —i ./;(1—ie) - dt'{0|[¢3 (©), Hitt")]|0)
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Initial Vacuum State

Ck(t) = ug(t)ax + uy (t)a]t—k

® Bunch-Davies vacuum, ax|0>=0:

[N: conformal time]

14



Br(ki,k2,ks3)
= <CkICk2Ck3> = (amplitude) x (277)30 (k| +ka+k3)b(ki,ka,k3)

e e 1
M4z [[:(2%;)

12 k2 |2
§:3 ﬁ 1}:3.12.2 me

LF]

b(ki,ka,k3)= =

Complicated? But... 5



. S Maldacena (2003)
Taking the squeezed limit

(k3<<k|=ky) %

® Br(ki,k>ks)
= <CkICk2Ck3> = (amplitude) x (277)30 (k| +ka+k3)b(ki,ka,k3)

; H4 1
zH (Qk3

)
¢*p* z Px . £
k3 k3

2k,?3
16

® b(kiki,ks->0)=

2k,?3



. S Maldacena (2003)
Taking the squeezed limit

(k3<<k;=ka) %

o Br(kkaks)
= <Ck1Cialk3> = (amplitude) (21T)36(k|+k2+k3)b(|<|,|<2,|<3)

4
>0)= :
® b(kiki,ks->0)= ¢4 M4 ¢* D ]|(|3|(3

—I—ns

= (I-ns)Pg(ki)Pg(ks)

17



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by Ry

——e—

® Br(kiki,k3->0) = (l-ns) x (21T)36(k|+k2+k3) X P§(|(|)P7;(|:3)

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 18



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by _ s )

o Be(kiki,k3->0) = (I1-n¢) x (217)38 (ki +ka+ks) x Pe(ki)Pe(ks)
| ) Bk b &)

£ _
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* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 19



Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

Single-field Theorem
(Consistency Relation)

(a) squeezed triangle
(k,xk, >>k,)

e For ANY single-field models’, the bispectrum in the
squeezed limit (k3<<k;=ky) is given by _ Ry

® Br(ki ki k3->0) = (l-ns) x (21T)36(k|+k2+k3) X P§(|(|)P§(|:3)

® Therefore, all single-field models predict fne=(5/12)(1—ns).

® With the current limit ns=0.96, fnL is predicted to be 0.017.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations. 20



Understanding the heorem

® First, the squeezed triangle correlates one very long-
wavelength mode, k. (=k3), to two shorter wavelength

modes, ks (=k|=k2):

® <CkiCioli3> = <(TCks)*Cuk>

® Then, the question is:“why should (Cks)? ever care
about Ty ?”

® The theorem says,“it doesn’t care, if Ck is exactly

scale invariant.’
21



CkL rescales coordinates

Separated by more than H-!

® The long-wavelength
curvature perturbation
rescales the spatial
coordinates (or changes the
expansion factor) within a
given Hubble patch:
® ds2=—dt2+[a(t)]2e?5(dx)?

sz
left the horizon already\




CkL rescales coordinates

Separated by more than H-!

® Now, let’s put small-scale
perturbations in.

® Q.How would the
conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation?

CkL
left the horizon already\ 23




CkL rescales coordinates

Separated by more than H-!

e Q.How would the

conformal rescaling of
coordinates change the
amplitude of the small-scale
perturbation!?

® A.No change, if Ck is scale-
invariant. In this case, no
correlation between Ty and
(Cks)? would arise.

sz
left the horizon already\




Creminelli & Zaldarriaga (2004); Cheung et al. (2008)
Real-space Proof

® The 2-point correlation function of short-wavelength
modes, E=<TCs(X)Ts(y)>, within a given Hubble patch
can be written in terms of its vacuum expectation value
(in the absence of C1), &, as:

® &= &o(|x-yl|) + CL[d&o(|x~y]|)/dTL]
® &u = &o(|x—y|) + T [dEo(|x—y|)/dIn|x-y]]
® &= &o(|x=yl) + T (I-ns)&o(|x=y])

3-pt func. = <(Gs)?*CL> = <& .C>
= (1-n5)So(|x-y|)<T?>




This is great, but...

® The proof relies on the following Taylor expansion:

® <Gs(x)Ts(y)>cL = <Ts(X)Ts(y)>o + Tu [d<Ts(X)Ts(y)>o/dC]

® Perhaps it is interesting to show this explicitly using the in-in
formalism.

® Such a calculation would shed light on the limitation of the
above Taylor expansion.

® |ndeed it did - we found a non-trivial “counter-
example” (more later) 26



Ganc & Komatsu, JCAP, 12,009 (2010)

An ldea

® How can we use the in-in formalism to compute the
two-point function of short modes, given that there is a

long mode, <Gs(X)Ts(y)>z?

® Here it is!

3/

(@G@),=-i [ ar(o]icé@.H o)

—(1—12€)

27



Ganc & Komatsu, JCAP, 12,009 (2010)

Long-short Split of H
GE=—i [ ar(o]icd. By

—(1—12€) ¢

® |nserting C=C+Cs into the cubic action of a scalar
field, and retain terms that have one T, and two Tgs's.

3 ki o 1 @8 wi s Tl OF
Sl(nt) _/ Zl;']:f (——() — _A> a%gLCé e T () (]gL(OCS) o

a3(s0;Cs0;0™ %+

4 H* 16 HS 4 HA '2H1
1 O() 3 O 1l -1 ()() 1 C)’) :

: 0;0;0™ (s 0;0;0™ 2—2%a® i St < 7 T
leﬂfj s *Cs ¢+ 739 CL— PN E (SGS
6Ly

o f(g)~_ ; 28
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Ganc & Komatsu, JCAP, 12,009 (2010)

Result

L2
¢O 1 ¢0
<CS,k1 CS,k2>Ck3 — CL,kl +ko K ¢OH 5 H2 P(kl)
® where
‘ 7 168 ., . 164 . ..
¢ = qug, (1) /_x(l_ie) dn _2 719 Uk, (n) + > 774° Tug; (1n)+

19 5 Ho i

o5 3d [ O Los Y 4% .

+2—a’— | = - ——= | ug, (n)ur, (n)| + c.c.
H= dt \ ¢gH 2 H? : ;

—
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Result

® Although this expression looks nothing like (I—ns)P(ki) Ty,
we have verified that it leads to the known consistency
relation for (i) slow-roll inflation, and (ii) power-law inflation.

® But, there was a curious case —Alexei Starobinsky’s exact
ns=| model.

® [f the theorem holds, we should get a vanishing
bispectrum in the squeezed limit.

30



Starobinsky (2005)

Starobinsky’s Model

® The famous Mukhanov-Sasaki equation for the mode

function is

12, 2

d“u;. i LB

=k kP — ——— | u, =0
dan

where

aQ 1 22z 2

2 — ——  e¢]he scale-invariance results when YR = i

SO, let’s write Z=B/n 31



Starobinsky’s Potential

3272G* B2
3

V(9)

\ “/47I'G¢

® This potential is a one-parameter family; this particular
example shows the case where inflation lasts very long:

Pend -~ X 32



Ganc & Komatsu, JCAP, 12,009 (2010)

Result

1 2
<C‘Sak1 Cs,k2>Ck3 — CLak1+k24P(k1)(klnstart)Qe 5> Pend

® It does not vanish!

® But, it approaches zero when Q¢4 is large, meaning the
duration of inflation is very long.

® |n other words, this is a condition that the longest
wavelength that we observe, ks, is far
outside the horizon.

® |n this limit, the bispectrum approaches zero.



Initial Vacuum State!

® VWhat we learned so far:

® The squeezed-limit bispectrum is proportional to
(1-ns)P(ki)P(k3), provided that Cis is far outside the
horizon when k| crosses the horizon.

® What if the state that Cks sees is not a Bunch-Davies
vacuum, but something else?

® The exact squeezed limit (k3->0) should still obey
the consistency relation, but perhaps something
happens when k3/k; is small but finite. s



Back to in-in

(¢ (")) = —z’/ dt’(0[[¢°(¢*), H(t')]]|0)

to

1
= s
dnN—U g, U g, U g, + C.C.

® The Bunch-Davies vacuum: u’ ~ ne " (positive frequency mode)

® The integral yields |/(ki+k2+ks3) -> 1/(2k)) in the squeezed limit

35



Back to in-in

(¢ (")) = —z‘/ dt'(0[[¢(¢*), Hi(t')][0)

to

¢
B((kfl, ]{32, /{33) = 21- 5

= (3

; 7

negative frequency

® Non-Bunch-Davies vacuum: u’ ~ N(Ake " + Bye*'M) mode

2 k.

® The integral yields 1/(ki—ka*k3), peaking in the folded limit _ «
Chen et al. (2007); Holman & Tolley (2008)

® The integral yields 1/(ki—katks) -> 1/(2ks) in the squeezed limit

Enhanced by k,/ks: this can be a big factor!
Agullo & Parker (201 1)



Agullo & Parker (2011)
How about the consistency

relation!?
B(k1, k2, k3) | = R(k1)R(k3) {(1 —ns)
02 Ky |
+4-[_?k—3- 1 — COS(kg?’]())-

® VWhen k3 is far outside the horizon at the onset of

inflation, No (whatever that means), k3no->0, and thus
the above additional term vanishes.

® The consistency relation is restored. Sounds familiar! ¥



An interesting possibility:
® What if kano= O(I)?

® The squeezed bispectrum receives an enhancement of
order &k,/ks, which can be sizable.

® Most importantly, the bispectrum grows faster
than the local-form toward k,/k3 -> 0!

® Br(ki,ka,ks) ~ I/ks® [Local Form]

® Br(kjkyks) ~ 1/k3* [non-Bunch-Davies]

® This has an observational consequence — particularly a
. 38
scale-dependent bias.



Power Spectrum of Galaxies

® (Galaxies do not trace the underlying matter density
fluctuations perfectly. They are biased tracers.

® “Bias” is operationally defined as

® bgalaxyz(k) — <|6galaxy,k|2> / <|6matter,k|2>

39



Dalal et al. (2008); Matarrese & Verde (2008); Desjacques et al. (201 1)

Scale-dependent Bias

Abn(k.R) 5e 1
b D(z)Mpg(k) 87202

/ dky k2 Mg (k1)
0

1 x B (kl. V k% + k% + 2kk1p, k)
< /_1 dp Mp ( k2 + k3 + 2Kk ) o

® A rule-of-thumb:

® For B(ki,ka,ks) ~ 1/ksP, the scale-dependence of the
halo bias is given by b(k) ~ 1/kP-!

® For a local-form (p=3), it goes like b(k)~ I/k?
® For a non-Bunch-Davies vacuum (p=4), would it go like

b(k)~1/k3?

40



It d oe S' Ganc & Komatsu (in prep)
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Ganc, PRD 84, 063514 (201 1); Ganc and Komatsu, in prep

CMB!?

® The expected contribution to fni'°? as measured by
CMB is typically fni o =8(€/0.01).

® A lot bigger than (5/12)(1—ns), and could be
detectable with Planck.

42



How about...

® Falsifying multi-field inflation?

43



Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (201 1)

Strategy

® We look at the local-form four-point function
(trispectrum).

® Specifically, we look for a consistency relation between
the local-form bispectrum and trispectrum that is
respected by (almost) all models of multi-field inflation.

® We found one: TNT, > %(%fNL)Q

provided that 2-loop and higher-order terms are ignored.

44



Trispectrum

® Tg(k|,kz,k3,k4)=(21'l')36(k|+k2+k3+k4)
XTnL[Pe(ki)Pe(ka)(Pe(|ki+ks|)+Pe([ki+ka|)) +eyc ]

k4 K|

45
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TNL

ITree-level Result
(Suyama & Yamaguchi)

® Usual ON expansion to the second order

| ON 1 "N o
- __ My 7y ————0Q[007 + . ..
5 z}: Do 2 ; 0propy

gives:

local Zl] \ Liak \ \ J

5/NL > 1(N1)?J

Z[IA*\II\ rIN 1N K 21(27\17\ 1)

r(Np)?f X 1(N )P

46



Now, stare at these.

9 ‘local __ Z[l N N & | N i N J
57 > r(Ni1)?)*
Z[ JK N dJ \ \ & 24 N X E[(ZJ *':\T.IJ*".\"T..]):2

TNL

2 (N 221 (Np)?)?

47



Change the variable...

Z[U\*\ff\ \[[\\[\ Z[(ZI\[I\ )

[21( 1)° ] [ZI( 1)° ]
o [g(} ”>\]3 : (6/5)fn=2uaib
e [Z.I(:\T..LI)Q]L& TNL:(ZIGIZ) (Zlb |2)48




Then apply the
Cauchy-Schwarz Inequality

(Z[: a%) (27: b?’) - (Z[: <z[1)f>2

® |mplies (Suyama & Yamaguchi 2008)

() ‘local 2
v N JNL
NTr = =

But, this is valid only at the tree level!




Harmless models can violate
the tree-level result

® The Suyama-Yamaguchi inequality does not always hold
because the Cauchy-Schwarz inequality can be 0=0. For

example:
NYNT N2 NT
. () 4.\ ~ 1 () N 4\ ~ 9
( = =001 + =——=005

In this harmless two-field case, the Cauchy-Schwarz inequality

becomes 0=0 (both fnL and T result from the second term).
In this case,

TN ~ 1(:)3(1"11\})[(?1.1)4/3

(Suyama & Takahashi 2008) o



‘¢ I I__<:><:>I:>’,’

ON

6 = ()()1 5’)

1 *N

| =003

I ()(72 T

Fourier transform this,

" Ry F RS e
/ (%)3/ (2r>3<""”2(k1“’

and multiply 3 times
)002(p)dd2 (k2 — q)dd2(q)dd2(ks — s)dda(s))

1 :
| ( permu t.at.lons)

*0p(k; + ko + k3) /
( ) u( 1 3 91“ J3|k1—p|3|k3+P|3

Pmin=

ko=min(ki,ka,k3)

- 8 In(kpL 1
(27?)301)(1(1+k2+k3) l‘l)(; ) | 5 "7

|
L?Ag k%kg

51



Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (201 1)

lgnoring details...

® | don’t have time to show you the derivation (you can
look it up in the paper), but the result is somewhat
weaker than the Suyama-Yamaguchi inequality:

TNL ~> %(%fNL)Q

Detection of a violation of this relation can potentially falsify inflation
as a mechanism for generating cosmological fluctuations.

52



+pone IMplications for Inflation

amplitude 2
In(TNL) . >l .Q.f ..
NL = 5 | 5/NL ® [he current limits
3.3x 104 from WMAP 7-year
(aslmz'gf Oe)t are consistent with

single-field or multi-
field models.

® 5o, let’s play around
with the future.

3-point
74 In(fNL) amplitude >

(Komatsu et al. 201 |)



Case A: Single-field Happiness

|n(TN|_)

D

1 /6, \° ® No detection of
™NL > 3 ( fNL) .
anything (fnL or

TnL) after Planck.
Single-field survived
the test (for the
moment: the future
galaxy surveys can
improve the limits
by a factor of ten).

600

10 In(fni) o4



(Suyama & Yamaguchi 2008; Komatsu 20 10; Sugiyama, Komatsu & Futamase 201 1)

Case B: Multi-field Happiness(?)

|n(TN|_) | 5
TNL > % (%ﬁ\lL) o fnL IS detected.
Single-field is gone.

® But, TnL is also
detected, in accordance
with TNL>0.5(6fNnL/ 5)2
600 expected from most
multi-field models.

30 In(fNL) &



(Suyama & Yamaguchi 2008; Komatsu 20 10; Sugiyama, Komatsu & Futamase 201 1)

Case C: Madness

| g xd ® f\L is detected. Single-
™L > o (;fm) field is gone.

® But, TnL is not detected,
or found to be

Remember: negative, inconsistent
| ' > 2
TNL iS not positive definite with Tne>0.5(6f1/5)”

600 ® Single-field AND
most of multi-field
models are gone.

30 In(fNL) 56




Summary

® A more insight into the single-field consistency relation
for the squeezed-limit bispectrum using in-in formalism.

® Non-Bunch-Davies vacuum can give an enhanced
bispectrum in the ks/k;<<I limit, yielding a distinct form

of the scale-dependent bias.

® Multi-field consistency relation between the 3-point and
4-point function can be used to rule out multi-field

inflation, as well as single-field.

S7



