Lecture 5: Sound Waves In the
Fireball Universe







Die kosmische Miso-Suppe

* \When matter and radiation were hotter than 3000 K,
matter was completely ionised. The Universe was
filled with plasma, which behaves just like a soup

* Think about a Miso soup (if you know what it Is).
lmagine throwing Tofus into a Miso soup, while
changing the density of Miso

 And Imagine watching how ripples are created ano
oropagate throughout the soup









Part |: Basics of Sound Waves



Getting a wave out of conservation equations
Surprisingly easy!

 What do you imagine when you hear the word “sound”?
* |n this lecture, the “sound wave” refers to a longitudinal (pressure) wave.

 The sound wave arises from two most important conservation equations in
physics: mass and momentum conservation.

e | et’s work out the simplest possible case as a warm up.
* |deal fluid (no viscosity)
 Non-relativistic

* No gravity, no expansion of space
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The mass and momentum conservation

The most important conservation equations in all physics

» Mass density and bulk velocity of a fluid element: p = p(t,x), Vv = Vv(t,X)
 Mass conservation (continuity equation) 0+ V- ( pV) — 0

v :p(\'f+v-VV):—

« Momentum conservation (Euler equation) P dt Pressure

gradient

 Now, let the fun begin: linear perturbation analysis.

* We perturb (displace) the fluid from its equilibrium configuration,
INn which p=const and v=0.
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Linear perturbation analysis

The most powerful technique In all physics

» | et the system be In its equilibrium.
 Add a perturbation: How does the system respond to a perturbation?
 Will it remain stable, or become unstable?

 How does the (un)stable solution behave?

* Advice: When you start dealing with any physical system for the first time, do
the linear perturbation analysis. This gives you a lot of physical insight into the
system, and often allows you to write a (influential) paper!

* E.g., Magneto-rotational instabllity (a.k.a. Balbus-Hawley instability)
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Linear perturbation analysis of a perfect fluid
Without gravity

p+V-(pv)=0

d
pd‘tf =p(Vv+v-Vv)=-VP

+ Add perturbations:
p=p+dp(t,x)
v = Vou(t,x) [du: velocity potential]sns e oo
P =P+ P(t,x)

 Keep the terms up to linear order inﬁperturbation. Then...



Linear perturbation analysis of a perfect fluid

Equation of state and the speed of sound
6p 4+ pV=ou =0
501 = —0P

 We now need “equation of state”, i.e., how is pressure related density?

» For a “barotropic fluid”, P = P(p), which is a useful approximation.

e Then, d P
0P = y 5p = c26p [cs: speed of sound]
p

* Now, combine these 3 equations! |




Linear perturbation analysis of a perfect fluid

Tadaa - the sound wave!
0p — ciV6p =0

 Thisis a wave equation!

d°q
. To see this, Fourier transform (5p(t, X) — (

o) 0pq(t) exp(iq - x)

0pgq + coq°0pq = 0
* The solution: 5/001( ) — Aq COS(C]CS ) + Bq Sm(qcst)



With gravity
Add a Newtonian potential gradient to the Euler equation
p+V-(pv)=0

pcfi‘tf =p(Vv+v-Vv)= —VP—,O

Potential
gradient

 [he potential can be provided by either:
1. The fluid itself (self-gravitating system), or

2. Some external force
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With gravity
Add a Newtonian potential gradient to the Euler equation
p+V-(pv)=0

pcfg =p(Vv+v-Vv)= —VP—,O

Potential
gradient

 [he potential can be provided by either:

1. The fluid itself (self-gravitating system): VQ b — 47TG 5 0

2. Some external force
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With gravity
Add a Newtonian potential gradient to the Euler equation
p+V-(pv)=0

P = p (Vv TV) = VP D

Potential
gradient

* The potential can be provided by either:

1. The fluid itself (self-gravitating system), or

2. Some external force: VQCI) — 470 10,
other

This I1s the most relevant case for this lecture because

the gravitational force is dominated by cold dark matter,
which does not form a sound wave.
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1. The Stability of a Spherical Nebula.

By J. H. Jeans, B.A., Fellow of Trinity College, and Isaac Newton Student in the
University of Cambridge.

Communicated by Professor G, H. DarwiN, F.R.S.
Received June 15,—Read June 20, 1901, Revised February 28, 1902,

INTRODUCTION.,

§ 1. THE object of the present paper can be best explained by referring to a sentence
which oceurs in a paper by Professor G. H. Darwin.* This is as follows :(—

“The principal question involved in the nebular hypothesis seems to be the
stability of a rotating mass of gas; but, unfortunately, this has remained up to now
an untouched field of mathematical research. We can only judge of probable results
from the investigations which have been made concerning the stability of a rotating
mass of liquid.”

The Jeans Instabillity



Jeans (1902)

The Jeans Instability

Instability of a self-gravitating cloud of gas
6p 4+ pV=ou =0
50t = —0P —pd

P

0P = . 0p = cép
ap

V2® = 4nGép

¢ OK, let’s go!



Jeans (1902)

The Jeans Instability

Instability of a self-gravitating cloud of gas
6p 4+ pV=ou =0
50t = —0P —pd

dP

0P = 0p = cép
ap

V2® = 4nGép

0p+ (—ciV?* — 4nGp) dp = 0

Fourier transform
dgq |
so(t.%) = [ 550pa(t)explia-x

0pq + (c?qﬂ?élep) 0pq = 0

* [his Is an important minus sign:
Instability for cs2g2 < 4ntGp



Jeans (1902)

The Jeans Instability

Instability of a self-gravitating cloud of gas

0Pq + (cng 47TG,6) 0pq = 0

* [his Is an important minus sign:
Instability for cs2qg2 < 4nGp

* [wo regimes:

Sound wave: oscillating solutions
1. Short wavelength (large q): Stability, with dpq = Aq exp(icsqt) + Bq exp(—icsqt)
Gravitational collapse: exponential growth

2. Long wavelength (small q): Instability, with dpq = Cq exp(wt) + Dq exp(—wt)
w = +/41Gp
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2.2 Axisymmetric Dispersion Relation: By = 0 Bal bus & HaWIey (1 991 )

Consider an axisymmetric accretion disk of finite vertical extent, not necessarily thin. Set up a standard cylindrical coordinate
system (R, ¢, z) with R being the perpendicular distance from the z-axis. We assume that the equilibrium angular velocity Q(R) is
constant on cylinders, by tall other flow variables may depend upon R and z if permitted by the magneto-fluid equations. A
magnetic field 1s presumed to be present in the disk, weak enough that in the initially unperturbed state its effect is quite negligible.
Differential rotation will cause the equilibrium field to acquire a helical structure, and the presence of a radial component of the
magnetic ficld together with shear will cause the azimuthal component to grow linearly with time. This leads to no great difficulties,
but let us nevertheless begin our study with the special case of vanishing radial field component, B = 0. We then return to treat the
more general case by building on the results of this slightly artificial but highly illustrative example.

We denote the azimuthal field component By(R, z)¢, and the vertical component B.(R)z. (The notation @, etc. is used to denote a
unit vector.) The basic dynamical equations are

You should now be familiar with these dinp  v..—-0 (2.12)
equations. The new ingredient is the dt
o . ,
magnetic fle|.d, but the b.aSIC dv 1 V(P N B_) 1 (B-V)B+V®—0. 2.1b)
concept is the same: dt  p 8n) dmp

The conservation equations plus OB

extra ingredients > Y X@xB)=0. (2.1¢)

The notation d/dt indicates the Lagrangian derivative and @ is the external gravitational potential. Others symbols have their usual
meanings.

We consider axisymmetric large-wavenumber Eulerian perturbations with space-time dependence e'®&R *k:2~ @0 Qyubscripts refer
to vector components. Fourier amplitudes of perturbed flow attributes are denoted as dp, dP, etc. We shall work in the Boussinesq
approximation, which is appropriate for the noncompressive disturbances of interest. This eliminates magnetoacoustic waves from

consideration, and greatly simplifies the bookkeeping. When written out in component form and only the largest terms retained, the
above set of seven equations becomes to linear order

kgdvg + k,0v, =0, (2.2a)
ikp 5p OP ik ik,
—i —2 5P — —= B_ 0B B_0B, =0, 2.2b

...equations continue...



We are now done yet

 We need to add a few more ingredients:
 Expansion of the Universe
* Viscosity (departure from an ideal fluid)
* |nteraction between electrons and photons (via Thomson scattering)

 Coulomb interaction between electrons, protons and helium nuclel

 But don’t worry: we will not include magnetic fields. If you insist, see:
K. Jedamzik, V. Katalinic, and A. V. Olinto, Damping of cosmic magnetic fields, Phys.Rev.
D57 (1998) 32643284, [astro-ph/9606080.

K. Subramanian and J. D. Barrow, Magnetohydrodynamaics in the early uniwverse and the
damping of noninear Alfven waves, Phys.Rev. D58 (1998) 083502, [astro-ph/9712083|.
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Part lI: Sound Horizon



When do sound waves become important?

Sound horizon

 When would the Sachs-Wolfe approximation (purely gravitational effects)
become invalid?

* The key to the answer: Sound-crossing Time

 Sound waves cannot alter temperature anisotropy at a given angular scale if
there was not enough time for sound waves to propagate to the
corresponding distance at the last-scattering surface

 The distance traveled by sound waves within a given time = The Sound Horizon

25



Photon Horizon and Sound Horizon

The difference is the speed of sound.

e First, the comoving distance traveled by e Then, we replace the speed of light with
photons Is given by setting the space-time a time-dependent speed of sound:
distance to be null:

dsj = —c*dt* + a*(t)dr® =0

» bhoton = C /o | ;Zj) * s / dt/ cs(t')

* We cannot ignore the effects of sound waves for JI's > 1
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Sound Speed

e Sound speed of an adiabatic fluid is given by
2 5 P 5 - OP: pressure perturbation
C S /0 - 0p: density perturbation
e For a baryon-photon system:

c; = 0P, /(dpy + 6pp)

We can ighore the baryon pressure because
It Is much smaller than the photon pressure




Sound Speed

e Using the adiabatic relationship between photons and baryons:

5p8/PB = 3,/ (py + P,) = 38p, /4,

[i.e., the ratio of the number densities of baryons and photons is equal everywhere]

and pressure-density relation of a relativistic fluid, 5Py=6py/ 3, we obtain

2 = 5P, /(5p, + 6pp) = 1/3(1 + 3pp/4p,)

* Or equivalently 1
(light speed is c=1)

— where

V3(1+R)| R= 3pB/4p~

S



The value of R?

* The baryon mass density goes like [a(t)]-3, whereas the photon energy
density goes like [a(t)]*. Thus, the ratio of the two, R, goes like aft).

* [he proportionality constant is:

312 2gh*y\ 1091
R=""F2 = 06120 (o)
4.97 ao 0.022/ 1+ 2
2, = STCPY 9 471 x 1075 b2 tor To =2.725 K

3H?
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Cosmological Parameters

e Unless stated otherwise, we shall assume a spatially-
flat A Cold Dark Matter (A\CDM) model with

2ph® = 0.022 Baryon density
2mh* =0.14  Total matter density
2 = 0.3

which implies:

24 =07, 2ph®=0.118, 25 = 0.04714
Dark matter density

Cosmological
Constant

Hy =100 h km s™" Mpc™ '} Hp = 68.31 km s~ Mpc~!



For the last-scattering redshift of z.=1090
(or last-scattering temperature of T =2974 K),

aors = 145.3 Mpc

We cannot ignore the effects of sound waves
If qrs>1. Since I~qr., this means

| > r /rs = 96

where we used aor.=13.95 Gpc
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