The lecture slides are available at https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html

Lecture 2: Propagation of Light

Part I: Light propagation in an expanding universe

Distance between two points

• The first step is to define the distance between two points in space.

• In Cartesian coordinates, the distance between two points in Euclidean space is

$$ds^2 = dx^2 + dy^2 + dz^2$$

To include the isotropic expansion of space,

$$ds^{2} = a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

$$\rightarrow \mathbf{X} \quad \text{Scale Factor} \quad \text{comoving coordinates}$$

У

Distance traveled by light in an expanding Universe

• When the light propagates in x direction, the time interval of the travel is

$$c^2 dt^2 = ds^2 = a^2(t) dx^2$$

X

Distance traveled by light in an expanding Universe

• When the light propagates in x direction, the time interval of the travel is

Strictly speaking, the angle is 45 degrees when the y-axis is the so-called "conformal time" instead of the physical time (t). This difference is not essential for a decelerated expansion of the Universe, so we ignore this subtlety in this lecture. For more information on this point, see "further readings" in https://www.mpa.mpa-garching.mpg.de/~komatsu/lectures---reviews.html

space-time diagram

Comoving distance traveled by light in an expanding Universe

• When the light propagates in x direction, the time interval of the travel is

The comoving distance traveled by light:

$$r = c \int_{t_0}^{t_0 + T} \frac{dt}{a(t)}$$

Physical distance traveled by light in an expanding Universe

• When the light propagates in x direction, the time interval of the travel is

The physical distance traveled by light:

$$d = ca(t_0 + T) \int_{t_0}^{t_0 + T} \frac{dt}{a(t)}$$

The physical distance does not depend on the arbitrary, unphysical normalisation of a(t)!

Horizon

How far has the light traveled since t=0?

The physical horizon distance:

$$d_H(T) = ca(T) \int_0^T \frac{dt}{a(t)}$$

The physical distance does not depend on the arbitrary, unphysical normalisation of a(t)!

The comoving horizon distance:

$$r_H(T) = c \int_0^T \frac{dt}{a(t)}$$

r_H

Concept of the "light cone"

The farther away we look in distance, the further back we look in time

- The light arrives at us at the time T.
- The light emitted at a distance r_2 had to be emitted earlier than that at r_1 , for us to see them both at the same time T.
- Here, "t_i" is called the "look-back time", in units of "years **ago**".
- The corresponding comoving distances from us are given by r_H r_i.

Concept of the "light cone"

The farther away we look in distance, the further back we look in time

- The light arrives at us at the time T.
- The light emitted at a distance r_2 had to be emitted earlier than that at r_1 , for us to see them both at the same time T.
- Here, "t_i" is called the "look-back time", in units of "years **ago**".
- The corresponding comoving distances from us are given by $r_H r_i$.
- We can see things only within this cone. Hence the name "light cone"

Light Cone, Explained

Horizon can be larger than the naive expectation

Do you think $d_H(T)=cT$? You would be surprised...

The physical horizon distance:

$$d_H(T) = ca(T) \int_0^{T} \frac{dt}{a(t)}$$

- In non-expanding space, $d_H(T) = cT$, as you expect.
 - However, this relation does not hold in expanding space!
 - For a(t) ~ tⁿ (with n<1; decelerating Universe), we obtain

$$d_H(T) = \frac{cI}{1 - m} > cT$$

The horizon grows faster than cT!

"Entering the Horizon"

- In a decelerating Universe, we can see more of the Universe as time goes by.
- If we wait long enough, we can see the entire Universe!
 - But in reality, today's Universe is accelerating, so this won't happen in future unfortunately.

 $a(t) \propto t^{2/3}$

Part II: Light propagation in a clumpy universe

Introducing the curved space

Non-Euclidean space

• Writing the distance between two points in Euclidean space:

$$ds^{2} = a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

• ...in a fancy way:

$$ds^2 = a^2(t) \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij} dx^i dx^j$$

$$\delta_{ij} = \begin{cases} 1 \text{ for i=j} \\ 0 \text{ otherwise} \end{cases}$$

Introducing the curved space

Non-Euclidean space

• Writing the distance between two points in Euclidean space:

$$ds^{2} = a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

• ...in a fancy way:

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$

$$= a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
-> CURVED SPACE!

Notation

From now on...

• The notation in my lectures follows mainly "Cosmology" by Steven Weinberg.

Spatial curvature: W and Dij

Non-Euclidean space

Re-writing this fancy expression:

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
fancier way: -> CURVED SPACE!

• ...in a fancier way:

$$ds^{2} = a^{2} \exp(-2\Psi) \sum_{i=1}^{3} \sum_{j=1}^{3} [\exp(D)]_{ij} dx^{i} dx^{j}$$

Spatial curvature: W and Dij

Non-Euclidean space

Re-writing this fancy expression:

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
fancier way: -> CURVED SPACE!

• ...in a fancier way:

$$ds^2 = a^2 \exp(-2 \underline{\varPsi}) \sum_{\substack{i=1 \ \text{perturbation}}}^3 \sum_{j=1}^3 [\exp(\underline{D})]_{ij} dx^i dx^j$$

Tensor perturbation Dij

Area-conserving deformation of space = Gravitational wave

Determinant of the matrix

$$[\exp(D)]_{ij} \equiv \delta_{ij} + D_{ij} + \frac{1}{2} \sum_{k=1}^{3} D_{ik} D_{kj} + \frac{1}{6} \sum_{km} D_{ik} D_{km} D_{mj} + \cdots$$

is given by $\exp(\sum_{\pmb{i}} D_{\pmb{i}\pmb{i}})$.

- Thus, D $_{ij}$ must be trace-less: $\sum_{\pmb{i}} D_{\pmb{i}\pmb{i}} = 0$,

so that the determinant is not modified by Dij.

Not just space...

Distance between two points in space AND TIME

 The four-dimensional space-time distance in non-expanding Euclidean space is given by

$$ds_4^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

- The light path is given by ds₄²=0 (hence called "null").
- Let us write this in a compact matrix form with 4-dimensional coordinates:

$$ds_4^2 = \sum_{\mu=0}^3 \sum_{
u=0}^3 \sum_{
u=0}^{\text{called the "metric tensor"}} dx^\mu dx^
u$$

$$x^{\mu} = (ct, x^i)$$

For the example above, we have $a_{00} = -1$, $a_{ij} = \delta_{ij}$

Not just space...

Distance between two points in space AND TIME

 The four-dimensional space-time distance in non-expanding Euclidean space is given by

$$ds_4^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

- The light path is given by ds₄²=0 (hence called "null").
- Including the expanding space and curvature in space AND TIME, we write

$$ds_4^2 = -c^2 \exp(2 \Phi) dt^2 + a^2 \exp(-2 \Psi) \sum_{i=1}^3 \sum_{j=1}^3 [\exp(D)]_{ij} dx^i dx^j$$
 Newtonian gravitational potential

Not just space...

Distance between two points in space AND TIME

 The four-dimensional space-time distance in non-expanding Euclidean space is given by

$$ds_4^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

- The light path is given by ds₄²=0 (hence called "null").
- Including the expanding space and curvature in space AND TIME, we write

$$ds_4^2 = \sum_{\mu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu \text{ with } \begin{cases} g_{00} = -\exp(2\varPhi), & g_{0i} = 0, \\ g_{ij} = a^2 \exp(-2\varPsi)[\exp(D)]_{ij} \end{cases}$$

From now on, I will set the speed of light to be unity: c=1

Equation of motion for photons

Evolution of photon's coordinates

• Photon's path is determined such that the distance traveled by a photon between two points is minimised. This yields the equation of motion for photon's coordinates $x^{\mu}=(t,x^i)$:

$$\frac{d^2x^{\lambda}}{du^2} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{dx^{\mu}}{du} \frac{dx^{\nu}}{du} = 0$$

This equation is known as the "geodesic equation".

The second term is needed to keep the form of the equation unchanged under general coordinate transformation => **GRAVITATIONAL EFFECT!**

Equation of motion for photons

Evolution of photon's momentum

• It is more convenient to write down the geodesic equation in terms of photon's momentum: dx^{μ}

$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$

•The magnitude of photon's momentum is equal to photon's energy: 3 3

$$p^2 \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} p^i p^j$$

Some calculations...

$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$

With
$$ds_4^2 = \sum_{\mu
u} g_{\mu
u} dx^\mu dx^
u$$
 $\left[egin{array}{c} g_{00} = -\exp(2 \Phi), \ g_{0i} = 0, \ g_{ij} = a^2 \exp(-2 \Psi) [\exp(D)]_{ij} \end{array}
ight]$

$$\Gamma^{\lambda}_{\mu\nu} \equiv \frac{1}{2} \sum_{\rho=0}^{3} g^{\lambda\rho} \left(\frac{\partial g_{\rho\mu}}{\partial x^{\nu}} + \frac{\partial g_{\rho\nu}}{\partial x^{\mu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\rho}} \right)$$

Scalar perturbation [valid to all orders]

 $\Gamma_{00}^{0} = \dot{\Phi}, \quad \Gamma_{0i}^{0} = \frac{\partial \Phi}{\partial x^{i}}, \quad \Gamma_{ij}^{i} = \exp(2\Phi) \sum_{j} g^{ij} \frac{\partial \Phi}{\partial x^{j}},$ $\Gamma_{0j}^{i} = \left(\frac{\dot{a}}{a} - \dot{\Psi}\right) \delta_{j}^{i}, \quad \Gamma_{ij}^{0} = \exp(-2\Phi) \left(\frac{\dot{a}}{a} - \dot{\Psi}\right) g_{ij},$ $\Gamma_{ij}^{k} = \delta_{ij} \sum_{\ell} \delta^{k\ell} \frac{\partial \Psi}{\partial x^{\ell}} - \delta_{i}^{k} \frac{\partial \Psi}{\partial x^{j}} - \delta_{j}^{k} \frac{\partial \Psi}{\partial x^{i}},$ $\Gamma_{ij}^{i} = \frac{\dot{a}}{a} \delta_{j}^{i} + \frac{1}{2} \sum_{k} \delta^{ik} \dot{D}_{kj}, \quad \Gamma_{ij}^{0} = \frac{\dot{a}}{a} g_{ij} + \frac{a^{2}}{2} \dot{D}_{ij},$ $\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell} \delta^{k\ell} \left(\frac{D_{i\ell}}{\partial x^{j}} + \frac{D_{\ell j}}{\partial x^{i}} - \frac{D_{ij}}{\partial x^{\ell}}\right),$

Tensor perturbation [valid to 1st order in D]

$$\Gamma_{0j}^{i} = \frac{\dot{a}}{a} \delta_{j}^{i} + \frac{1}{2} \sum_{k} \delta^{ik} \dot{D}_{kj} , \quad \Gamma_{ij}^{0} = \frac{\dot{a}}{a} g_{ij} + \frac{a^{2}}{2} \dot{D}_{ij} ,
\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell} \delta^{k\ell} \left(\frac{D_{i\ell}}{\partial x^{j}} + \frac{D_{\ell j}}{\partial x^{i}} - \frac{D_{ij}}{\partial x^{\ell}} \right) ,$$

Recap so far

Math may be messy but the concept is transparent!

- Requiring photons to travel between two points in space-time with the minimum path length, we obtained the geodesic equation.
- The geodesic equation contains $\Gamma^{\lambda}_{\mu\nu}$ that is required to make the form of the equation unchanged under general coordinate transformation.
- Expressing $\Gamma^{\lambda}_{\mu\nu}$ in terms of the metric perturbations, we can obtain the desired result the equation that describes the rate of change of the photon energy.

Rewrite
$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$
 in terms of $p^{2} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij}p^{i}p^{j}$

 $\mathbf{\gamma}^{ ext{i}}$ is a unit vector of the direction of photon's momentum: $\sum (\gamma^i)^2 = 1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

• Let's interpret this equation physically. Explain each term in words!

 $\mathbf{\gamma}^{\mathrm{i}}$ is a unit vector of the direction of photon's momentum: $\sum_{\dot{}} (\gamma^i)^2 = 1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

- Cosmological redshift
- Photon's wavelength is stretched in proportion to the scale factor, and thus the photon energy decreases as

$$p \propto a^{-1}$$

 ${f \gamma}^i$ is a unit vector of the direction of photon's momentum: $\sum_i (\gamma^i)^2 = 1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i} - \frac{1}{2} \sum_{ij} \dot{D}_{ij} \gamma^{i} \gamma^{j}$$

- Cosmological redshift part II
- The spatial metric is given by $ds^2 = a^2(t) \exp(-2\Psi) d\mathbf{x}^2$
- Thus, locally we can define a new scale factor: $ilde{a}(t,\mathbf{x})=a(t)\exp(-\Psi)$
- Then the photon energy decreases as

$$p \propto \tilde{a}^{-1}$$

 ${f \gamma}^i$ is a unit vector of the direction of photon's momentum: $\sum_i (\gamma^i)^2 = 1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Scalar)

 ${f \gamma}^{f i}$ is a unit vector of the direction of photon's momentum: $\sum_i (\gamma^i)^2 = 1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Tensor)

 ${f \gamma}^{
m i}$ is a unit vector of the direction of photon's momentum: $\sum (\gamma^i)^2=1$

Sachs & Wolfe (1967)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Tensor)

