The lecture slides are available at
https://wwwmpa.mpa-garching.mpqg.de/~komatsu/
lectures--reviews.html

Lecture 2: Propagation of Light


https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html
https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html

Part I: Light propagation in an
expanding universe




How does light propagate Iin space?

Distance between two points

* The first step is to define the distance between two points in space.

y

* |n Cartesian coordinates, the distance between two points in Euclidean space is

ds® = dx* + dy® + dz-

* Jo Include the isotropic expansion of space,

ds? =|a?(t)(da? + dy? + d=?)

X Scale Factor comoving coordinates




How does light propagate Iin space?

Distance traveled by light in an expanding Universe

 When the light propagates in x direction, the time interval of the travel is

c*dt* = ds”* = a*(t)dx”



How does light propagate Iin space?

Distance traveled by light in an expanding Universe

 When the light propagates in x direction, the time interval of the travel is

ct
T~ 2d12 = ds? = o2 (t)dx?

Strictly speaking, the angle is 45 degrees when the y-axis is
the so-called “conformal time” instead of the physical time (t).
This difference is not essential for a decelerated expansion of

the Universe, so we ignore this subtlety in this lecture.
For more information on this point, see “further readings” in
445 degrees” https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--
reviews.html

space-time diagram X 5
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How does light propagate Iin space?

Comoving distance traveled by light in an expanding Universe

 When the light propagates in x direction, the time interval of the travel is

ct
T~ 2d12 = ds? = o2 (t)dx?

The comoving distance traveled by light:

tot4" ¢

r =2 —
to @(t)




How does light propagate Iin space?

Physical distance traveled by light in an expanding Universe

 When the light propagates in x direction, the time interval of the travel is

ct
T~ 2d12 = ds? = o2 (t)dx?

The physical distance traveled by light:

tot+2" (¢
d = calty + 1’ —
( ¥ ) to @(t)

x The physical distance does not depend on the arbitrary, unphysical normalisation of a(t)!




Horizon

How far has the light traveled since t=0?

The physical horizon distance:

di(T) = ca(T) /o %

The physical distance does not depend on the arbitrary, unphysical normalisation of a(t)!

ct

The comoving horizon distance:

TH(T) :C/O i

) | a(t)




Concept of the “light cone”

The farther away we look In distance, the further back we look in time

ct .

The light arrives at us at the time T.

The light emitted at a distance r2 had to be emitted
earlier than that at r1, for us to see them both at the
same time T.

Here, “ti” is called the “look-back time”, in units of
“years ago’.

The corresponding comoving distances from us are
given by ry—ri.



ct

Concept of the “light cone”

The farther away we look In distance, the further back we look in time

* The light arrives at us at the time T.

* [he light emitted at a distance r» had to be emitted

earlier than that at r1, for us to see them both at the
same time T.

 Here, “t,” is called the “look-back time”, in units of
“years ago’.

The corresponding comoving distances from us are
given by ry—ri.

We can see things only within this cone. Hence the
name “light cone”

maximum observable region X 10
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Horizon can be larger than the naive expectation
Do you think du(T)=cT? You would be surprised...

The physical horizon distance:

di(T) = ca(T) / A

o a(t)

* In non-expanding space, du(T) = cT, as you expect.

ct

 However, this relation does not hold in expanding space!

.............. . .s For a(t) ~ tn (with n<1; decelerating Universe), we obtain

cl’ The horizon grows
dg (T)

faster than cT!

observable X 13 ]. — T



a(t) o t?/3
dp(t) = 3ct o a3/?

“Entering the Horizon”

1 04 [ | | | | T /fh
* |In a decelerating %) 5 _ l Radiation Era ' «
Universe, we can o 10°r 1/2 -
’ = a(t) oc t
see more of the ~ " , = -
Universe astime  « 10°F dp(t) = 2ct xxa” .7 _
goes by. £ 2 i _
* If we wait long > 10

enough, we can see Y o -
the entire Universel — 107" = 400 orizon —~
O o ubble length -
» But in reality, B 1076 |- o/H@) 9 )

today’s Universe = |
IS aCCeleratlng, 1 0_8 “?nter the hOIriZ()n” IO £Q | | -~

so this won’t
happen in future 10" 10°°® 10> 10™* 10 107% 107" 10°

unfortunately. 14 Scale Factor, o/@ |
today’s scale factor



Accelerating Universe

a

(t) o t2/3
i (t) = 3ct < a®/?
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Part ll: Light propagation in a
clumpy universe



Introducing the curved space

Non-Euclidean space

* Writing the distance between two points in Euclidean space:
ds® = a*(t)(dz* + dy* + dz*)
e ...In afancy way:

3 .
ds® =a*(t) > > 055 dx”dx’
v=17=1 1 for i=)

Ly~ O otherwise



Introducing the curved space

Non-Euclidean space

* Writing the distance between two points in Euclidean space:
ds® = a*(t)(dz* + dy* + dz*)

e ...In afancy way:

12 — g2 > 5. - Ndrtdr?
s =a” >, > (04 Jr r'dx

1—=1 ] — 1 metric perturbation
-> CURVED SPACE!



Notation

From now on...

* The notation in my lectures follows mainly “Cosmology” by Steven Weinberg.
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Spatial curvature: W and Dj;

Non-Euclidean space

* Re-writing this fancy expression:

12 — g2 59 5. Ndrdr?
s*=a" ), p (0 + L ad

’I: — ]. j — 1 metric perturbation
e ...in a fancier way: -> CURVED SPACE!

3 3 . .
d82 — CL2 GXP(—QSP) z:l Zl [GXP(D)]ijd.CIIZdCEJ
1=1 )=



Spatial curvature: W and Dj;

Non-Euclidean space

* Re-writing this fancy expression:

52 = a” z Z (04 —!—.dmzdazj

1—=1 j 1 metric perturbation
» ...in a fancier way: -> CURVED SPACE!

3 3

ds® = a’exp(—2¥) 3= 3" [exp(D))];;dz'dz’

Scalar curvature 7—1 ,7 1 Tensor perturbation
perturbation ” = Gravitational wave



Tensor perturbation Dj;

Area-conserving deformation of space = Gravitational wave

e Determinant of the matrix

1 2 1
[eXP(D)]z‘j — 5@' ‘|‘Dij | 5 Z Dikaj | . ZDikamij‘|‘ ¢ o o
k=1 km

s given by exp()> D;;) -
()

* Thus, Djj must be trace-less: Z Dii =0,
2
so that the determinant is not modified by Dj;.

22



Not just space...

Distance between two points in space AND TIME

* The four-dimensional space-time distance in non-expanding Euclidean space
IS given by

ds; = —c*dt* + dz* + dy* + dz”

* The light path is given by ds42=0 (hence called “null”).

e | et us write this | |n a compact matrix form with 4-dimensional coordinates:
called the “metric tensor” :I/‘M — (Ct

2 __ E : E / v
d84 o g,uu :E daj For the example above, we have

U= () =0 goo — _17 gi; — 5@3



Not just space...

Distance between two points in space AND TIME

* The four-dimensional space-time distance in non-expanding Euclidean space

IS given by

ds; = —c*dt* + dz* + dy* + dz”

* The light path is given by ds42=0 (hence called “null”).

* Including the expanding space and curvature in space AND TIME, we write

3 3
ds? =—c2exp(20)dt? + a® exp(—20) 3 3

Newtonian
gravitational potential

24

1=1 9=1

exp(D)
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17 dx'dx’



Not just space...

Distance between two points in space AND TIME

* The four-dimensional space-time distance in non-expanding Euclidean space

IS given by

ds; = —c*dt* + dz* + dy* + dz”

* The light path is given by ds42=0 (hence called “null”).

* Including the expanding space and curvature in space AND TIME, we write

goo — — eXp(Q@)a 4doi: — Oa

3 3
dsi — Z Zgwda:“da:” with

u=0 vr=0

1

— 0,2
gi;j — 4" €XP

(—2Y)

exp(D).

12]




From now on, | will set the speed
of light to be unity: c=1



Equation of motion for photons

Evolution of photon’s coordinates

 Photon’s path is determined such that the distance traveled by a photon
between two points is minimised. This yields the equation of motion for
photon’s coordinates z# = (¢, z%) :

y
d?x? N Z z \ dzh dx” 0
du® =0 ,=0 W du du
This equation is known as the “geodesic equation”. otens e

The second term is needed to keep the form of the equation unchanged X

under general coordinate transformation => GRAVITATIONAL EFFECT!

27



Equation of motion for photons

Evolution of photon’s momentum

* |t is more convenient to write down the geodesic equation in terms of

photon’s momentum: . At
P = \
d ;L pl/ y
u=0v= o p°
-The magnitude of photon’s momentum is equal to photon’s photors path
energy: 3 3 o X

? = > 2. 9D

i=1j=1

28



Some calculations...

dp” N
— 0
dt ,uz() VZO p°

With ds; = ) g, dotdz” (goo_zexp@@’ _— )
LV

gi; = a* exp(—2¥)lexp(D)]y;

dg OGpr  OYGuv
— AP PH P M
- Z I ( oxrV i Ok OxP )

Scalar perturbation [valld to all orders] Tensor perturbation [valid to 1st order in D]
0 - 0 8@ "'J 845 , e 0 d 2

; Oxd 2
. . 1 D D.
. a . : + k(/ if b Hij
Féj - (— B g(’/) 5;’ ng — exp( 29) (_ _W) 9ij » T2 Z (8'1‘3 U Oz’ 6a:£) ’

a
oV oV oV
B =5 3 6F k k

Tig = %4 ; ° Ozt % " OxJ % Oz’




Recap so far

Math may be messy but the concept is transparent!

* Requiring photons to travel between two points in space-time with the
minimum path length, we obtained the geodesic equation.

* [he geodesic equation contains F , that Is required to make the form of the
equation unchanged under general coordinate transformation.

* EXpressing r v In terms of the metric perturbations, we can obtain the

desired result the equation that describes the rate of change of the
photon energy.

. d A 3 L _ 3 3
Rewrite 2=+ 5~ S° 1 P" _o interms of 2= gip'p’
dt p=0 =0 p 1=1 9=1

30



Vi Is a unit vector of the direction of

The Result photon’s momentum: z(,yi)z —1
Sachs & Wolfe (1967) ?

1 dp a . 1 ob . 1 . o
—— = —— 4 ¥ — = - — =3 Dy
p dt a a ; ox? ! 2 % i

» |et’s interpret this equation physically. Explain each term in words!

31



Vi Is a unit vector of the direction of

The Result photon’s momentum: §~(i)2 _
Sachs & Wolfe (1967) ?

1 dp a 1 ov . 1 .
— Y —§ZDz‘j773
%

it ) Bl SIS /S |
p dt a+ a;(‘)x"’

 Cosmological redshift

* Photon’s wavelength is stretched in proportion to the scale factor, and thus
the photon energy decreases as

D X a*

32



Vi Is a unit vector of the direction of

The Result
Sachs & Wolfe (1967)

lap  a 1
- __Z g/__
pdt a+ Z

 Cosmological redshift - part Il

photon’s momentum: Z(,Yi)z 1

()

0P
(9:1:‘"’

» The spatial metric is given by d52 — a2 (t) exp(—Q\If)dXZ

» Thus, locally we can define a new scale factor: a(t X) (75) exp(

* Then the photon energy decreases as

S pxXa —1

. 1 .
_§ZD7:3'773
%

V)



Vi Is a unit vector of the direction of

The Result photon’s momentum: Z(,Yqz)z —1
Sachs & Wolfe (1967) 2
1 dp a . 1 ob .| 1 . o
__:___|_gp__ N Vad . .~t~J
p dt a a;(‘)az"’v 2%: i
o Gravitational blue/redshift ( )

N N

Oy

Potential well (¢ < 0)



Vi Is a unit vector of the direction of

The Result photon’s momentum: §~(iy2 — 1
Sachs & Wolfe (1967) ?
1dp a4 . 106 | 1__. ..
i U B N, B ) s JN,
p dt a a;(‘)x’ﬂ QZZJ- R
o Gravitational blue/redshift ( )

hy hyx O

0 0 0




Vi Is a unit vector of the direction of

The Result photon’s momentum: §~(iy2 — 1
Sachs & Wolfe (1967) ?
ldp & . 106 | 1_.. ..
__:___|_gp__ N Vad P . .~t~J
p dt a a;(‘)az’ﬂ QZZJ- R
o Gravitational blue/redshift ( )

hy hy O Y

0 0 0




