The lecture slides are available at <u>https://wwwmpa.mpa-garching.mpg.de/~komatsu/</u><u>lectures--reviews.html</u>

Lecture 10: Gravitational Waves

Part I: Basics of the Gravitational Waves

Gravitational waves are coming towards you! To visualise the waves, watch motion of test particles.

Gravitational waves are coming towards you! To visualise the waves, watch motion of test particles.

Distance between two points

Euclidean space is $ds^2 = dx^2$

To include the isotropic expansion of space,

$$ds^2$$

 $= a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$

Scale Factor

X

In Cartesian coordinates, the distance between two points in

$$+ dy^2 + dz^2$$

Distortion in space

$ds^{2} = a^{2}(t) \sum_{i=1}^{3} \sum_{j=1}^{3} \delta_{ij} dx^{i} dx^{j}_{x=(x,y,z)}$ $\delta_{ii} = 1$ for i=j; $\delta_{ii} = 0$ otherwise $(D_{ij})dx^i dx^j$ $(\delta_{ij} +$

Distortion in space!

Four conditions for gravitational waves

The gravitational wave shall be <u>transverse</u>.

Four conditions for gravitational waves

The gravitational wave shall <u>not change the area</u>

• The determinant of δ_{ij} +D_{ij} is 1

1 condition for D_{ii}

6 - 4 = 2 degrees of freedom for GW We call them "plus" and "cross" modes

- The symmetric matrix D_{ii} has 6 components, but there are 4 conditions. Thus, we have two degrees of freedom.
- If the GW propagates in the $x^3=z$ axis, non-vanishing components of D_{ij} are

h₊=cos(qz)

h_x=cos(qz)

11

Tensor-to-scalar Ratio, the "r" **Everyone is after this!**

- The current upper bound is r < 0.044 (95%CL) [Tristram et al., arXiv:2010.01139]
- We want to find this in the B-mode polarisation of the CMB.

How to detect GW? Laser interferometer technique, used by LIGO and VIRGO

Detecting GW by CMB Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

Detecting GW by CMB Quadrupole temperature anisotropy generated by red- and blue-shifting of photons

Isotropic radiation field (CMB)

Sachs & Wolfe (1967)

Detecting GW by CMB Polarisation Quadrupole temperature anisotropy scattered by an electron

Isotropic radiation field (CMB)

Generation and erasure of tensor quadrupole (viscosity)

- last scattering.

$$\left[\frac{\Delta T(\hat{n})}{T_0}\right]_{\rm ISW} = -\frac{1}{2}$$

 Gravitational waves create quadrupole temperature anisotropy (i.e., tensor viscosity of a photon-baryon fluid) gravitationally, without a velocity potential.

• Still, tight-coupling between photons and baryons erases the tensor viscosity exponentially before the

 $\sum_{ij} \int_{t_{I}}^{t_{0}} dt \, \dot{D}_{ij}(t, \hat{n}r) \hat{n}^{i} \hat{n}^{j}$ negligible contribution before the last scattering

Part II: Propagation of Gravitational Waves in an Expanding Universe

• Einstein's equation gives a wave equation for the GW:

source of GW

• Einstein's equation gives a wave equation for the GW:

source of GW

 $g^{00} = -1, \quad g^{0i} = 0, \quad g^{ij} = a^{-2}(t) \delta^{ij}, \quad \sqrt{-g} = a^{3}(t) \qquad ds_{4}^{2} = -dt^{2} + a^{2}(t) d\mathbf{x}^{2} = \sum_{\mu\nu} g_{\mu\nu} dx^{\mu} dx^{\nu}$

• Einstein's equation gives a wave equation for the GW: $^{2}\Box D_{ij} = -16\pi GT_{ij}^{GW}$ where

> Effect of the expansion of the Universe!

The stress-energy source of GW

• Einstein's equation gives a wave equation for the GW: $a^2 \Box D_{ij} = -16 \pi G T_{ij}^{GW}$ where $3\frac{\dot{a}}{\alpha}\frac{\partial}{\partial t}\left|-\frac{q^{2}}{\alpha^{2}}\right| \frac{\ln \text{Fourier space}}{\nabla^{2}\exp(i\mathbf{q}\cdot\mathbf{x})} = -q^{2}\exp(i\mathbf{q}\cdot\mathbf{x})$

> Effect of the expansion of the Universe!

The stress-energy source of GW

• Einstein's equation gives a wave equation for the GW: $]D_{ij} = -16\pi GT_{ij}^{GW}$ where

> Effect of the expansion of the Universe!

The stress-energy source of GW

In Fourier space

 $\nabla^2 \exp(i\mathbf{q} \cdot \mathbf{x}) = -q^2 \exp(i\mathbf{q} \cdot \mathbf{x})$

Physical wavenumber, q/a

Super-horizon Solution (q << aH) $\ddot{D}_{ij} + \frac{3\dot{a}}{a}\dot{D}_{ij} = 0$ $D_{ij} = \text{constant} + \text{decaying term}$

- Super-horizon tensor perturbation is conserved!
 - Similar to the conserved scalar perturbation, ζ .
 - Thus, no ISW temperature anisotropy on super-horizon scales
- It does not look like "gravitational waves", but it will start oscillating and behaving like waves once it enters the horizon

 $D_{ij,\boldsymbol{q}}(t) = C_{ij,\boldsymbol{q}} \frac{3j_1(qr)}{qr} \propto \frac{1}{a(t)}$

 $\dot{D}_{ij,\boldsymbol{q}}(t) = -C_{ij,\boldsymbol{q}} \frac{q}{a(t)} \frac{3j_2(q\gamma)}{q\gamma} \propto \frac{1}{a^2(t)}$

- $\partial D_{ij}/\partial t$ gives the ISW. It peaks at the horizon crossing, qr~2.
- The energy density is given by $(\partial D_{ij}/\partial t)^2$, which indeed decays like radiation, a⁻⁴.

Matter-dominated Solution

$$r(t) = c \int_0^t \frac{dt'}{a(t')}$$
$$j_1(qr) = \frac{\sin(qr)}{(qr)^2} - \frac{\cos(qr)}{q}$$

Cf: Sound wave

 $\frac{\partial \rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = A\cos(qr_s) + B\sin(qr_s) - R\Phi$

The oscillation of the GW solution is given by the photon horizon, not the sound horizon, as the GW propagates at the speed of light.

Energy density of the gravitational waves $\rho_{\rm GW}(t) = \frac{1}{4} M_{\rm pl}^2 \sum_{ij} \langle \dot{D}_{ij}(t, \mathbf{x}) \rangle$ $= \frac{1}{2} M_{\rm pl}^2 \sum_{\substack{\lambda=+,\times}} \langle \dot{h}_{\lambda}^2(t,$

 The equation of motion yields $\dot{D}_{ij} \propto a^{-2}(t)$ $\rho_{\rm GW}(t)$

$$\dot{D}D_{ij}(t, \mathbf{x})\rangle$$
 $M_{\rm pl} = (8\pi G)^{-1/2}$
 $\mathbf{x})
angle$ $D_{ij} = \begin{pmatrix} h_+ & h_{\times} \\ h_{\times} & -h_+ \\ 0 & 0 \end{pmatrix}$

$$\propto a^{-4}(t)$$

The GW density redshifts as relativistic particles (radiation)!

Part III: Temperature Anisotropy from Gravitational Waves

$$\sum_{ij} \int_{t_L}^{t_0} dt \, \dot{D}_{ij}(t, \hat{n}r) \hat{n}^i \hat{n}^j$$

Formal Solution (Tensor)

 $\left[\frac{\Delta T(\hat{n})}{T_0}\right]_{\rm ISW} = -\frac{1}{2} \sum_{ij} \int_{t_L}^{t_0} dt \ \dot{D}_{ij}(t,\hat{n}r)\hat{n}^i \hat{n}^j$ negligible contribution before the last scattering $= -\frac{1}{2}\sin^2\theta \int_{t_L}^{t_0} dt \left(\dot{h}_+ \cos 2\phi + \dot{h}_\times \sin 2\phi\right)$

 n_{\times}

Formal Solution (Tensor)

$$\sum_{ij} \int_{t_{I}}^{t_{0}} dt \, \dot{D}_{ij}(t, \hat{n}r) \hat{n}^{i} \hat{n}^{j}$$
egligible contribution before the last scattering
$$\int_{t_{I}}^{t_{0}} dt \left(\dot{h}_{+} \cos 2\phi + \dot{h}_{\times} \sin 2\phi \right)$$

When a plane wave gravitational wave propagates in the z direction, no temperature anisotropy is seen towards the poles (θ =0, π). The anisotropy is maximised on the horizon ($\theta = \pi/2$) with cos(2 ϕ) & $sin(2\phi)$ modulation in the azimuthal directions.

Formal Solution (Tensor)

 $\left[\frac{\Delta T(\hat{n})}{T_0}\right]_{\rm ISW} = -\frac{1}{2} \sum_{ij} \int_{t_L}^{t_0} dt \ \dot{D}_{ij}(t,\hat{n}r)\hat{n}^i \hat{n}^j$

negligible contribution before the last scattering $= -\frac{1}{2}\sin^2\theta \int_{t_L}^{t_0} dt \left(\dot{h}_+ \cos 2\phi + \dot{h}_\times \sin 2\phi\right)$

-0.77 🗖

Scale-invariant Temperature C_I from GW

Tensor mode damped by redshifts between the horizon reentry and the decoupling

 $\int dt \dot{D}_{ij}(t,\hat{n}r)\hat{n}^i\hat{n}^j$

Part IV: E- and B-mode Polarisation from Gravitational Waves

Polarisation directions perpendicular/parallel to the wavenumber vector -> E mode polarisation

Polarisation directions 45 degrees tilted from to the wavenumber vector -> B mode polarisation

Signature of gravitational waves in the sky [?]

BICEP2: B signal

<u>CAUTION</u>: we are NOT seeing a single plane wave propagating perpendicular to our line of sight

Signature of gravitational waves in the sky [?]

BICEP2: B signal

propagating perpendicular to our line of sight

(l,m)=(2,2)

• E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon.

• E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon.

• E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon

 δ -15 留 ご 10--16 $(10^{-17})^{+}$ $(10^{-18})^{+}$ $(10^{-15})^{+}$ 15 m² 1 (-16 $\tilde{-10}$ -17 $\frac{10}{3}$ 10^{-18}

Pritchard and Kamionkowski (2005)

 δ -15 留ご10--16 $(10^{-17})^{+}$ $(10^{-18})^{+}$ $(10^{-15})^{+}$ -15 $\frac{m}{2}$ 10 -16 $\tilde{-10^{-17}}$ $\frac{10}{3}$ 10^{-18}

Pritchard and Kamionkowski (2005)

Enjoy starting at these power spectra, and being able to explain all the features in words!

Appendix: Experimental Landscape

What comes next? The Simons Array

Advanced Atacama Cosmology Telescope

The Biggest Enemy: Polarised Dust Emission

- The upcoming data will **NOT** be limited by statistics, but by systematic effects such as the Galactic contamination
- Solution: Observe the sky at multiple frequencies, especially at high frequencies (>300 GHz)
- This is challenging, unless we have a superb, high-altitude site with low water vapour

•CCAT-p!

CCAT-p Collaboration

Frank Bertoldi's slide from the Florence meeting Where is CCAT-p? Cerro Chajnantor at 5600 m w/ TAO

6 September 2017

Frank Bertoldi's slide from the Florence meeting

CCAT-prime is a high surface accuracy / throughput 6 m submm (0.3-3mm) telescope

Cornell U. + German consortium + Canadian consortium + ...

6 September 2017

Florence

• CCAT-D: 6-m, Cross-dragone design, on Cerro Chajnantor (5600 m)

Germany makes great telescopes!

- "VERTEX Antennentechnik GmbH"
 - the "lessons learned" with prototypes.

Design study completed, and the contract has been signed by

 CCAT-p is a great opportunity for Germany to make significant contributions towards the CMB S-4 landscape (both US and Europe) by providing telescope designs and

CCAT-prime

designed and built by Vertex Antennentechnik GmbH, Duisburg

A rendering of the unique and powerful radio telescope. Image courtesy of VERTEX ANTENNENTECHNIK.

Simons Observatory (USA)

in collaboration

South Pole?

This could be "CNB-S4"

CCAT-prime

A rendering of the unique and powerful radio telescope. Image courtesy of VERTEX ANTENNENTECHNIK.

Simons Observatory (USA)

in collaboration

South Pole?

To have even more frequency coverage...

+ participations from USA, Canada, Europe

LiteBIRD2028–

olarisation satellite dedicated to measure CMI arisation from primordial GW, with a few thous TES bolometers in space

+ participations from USA, Canada, Europe

LiteBIRD 2028-

May 21, 2019: JAXA has chosen LiteBIRD as the strategic large-class mission. We will go to L2!

elected!

Foreground Removal

Polarized galactic emission (Planck X)

- Polarized foregrounds
 - Synchrotron radiation and thermal emission from inter-galactic dust
 - Characterize and remove foregrounds
- 15 frequency bands between 40 GHz 400 GHz
 - Split between Low Frequency Telescope (LFT) and High Frequency Telescope (HFT)
 - LFT: 40 GHz 235 GHz
 - HFT: 280 GHz 400 GHz

LiteBIRD: 15 frequency bands

Slide courtesy Toki Suzuki (Berkeley)

Slide courtesy Yutaro Sekimoto (ISAS/JAXA) LiteBIRD Spacecraft

2018/7/21

LiteBIRD Collaboration

Primordial tilt $(n_{\rm s})$