The lecture slides are available at <u>https://wwwmpa.mpa-garching.mpg.de/~komatsu/</u><u>lectures--reviews.html</u>

Physics of the Cosmic Microwave Background IMPRS Advanced Course

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik), November 3–December 3, 2020

Basic information

- The lectures are given on Tuesdays and Thursdays, from 10:00–11:30 (90 minutes)
 - Starting on November 3, ending on December 3
- Except for today, the format is 40+10+40, i.e.,
 - 10:00–10:40, 10 minutes break, and 10:50–11:30
- Today is 60+10+20.

Syllabus

- This lecture covers all essential aspects of the physics of primary background (CMB).
 - We do not cover the physics of recombination.
 - as the thermal and kinetic Sunyaev-Zeldovich effect.
- of the physics of CMB in words.

anisotropies (both temperature and polarisation) of the cosmic microwave

• We also do not cover anisotropies generated in a late time Universe, such

• There will be equations; but the focus of the lecture is to **understand** the underlying physics. The goal: You will be able to explain all essential aspects

Tip: Download lecture notes in advance https://www.mpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html

- It does not make sense to take notes when the complete lecture notes are available already.
 - Download the lecture notes before each lecture and have them ready.
 - Limit note taking to complementing the lecture notes, i.e., the things that I say but are not written in the notes.
- You certainly do not need to take notes of the equations. Focus on physics.

Tip: Ask Questions

- You are most welcome to ask questions anytime during the lecture.
- Asking questions is the easiest way to learn, but I know that you are too shy to ask...
 - "Is my question too simple?" "Is my question too naive?" The simple and naive questions are the **best** questions!
- The on-line lecture format makes it difficult to ask questions.
 - The best option is to write your questions in "Public Chat".
 - I will answer questions in the order that I receive them.
 - But, you are also always welcome to ask questions directly without writing in Chat.

Plan: Today Movie! (41 minutes)

- After briefly introducing the CMB, we will watch the world's first movie on CMB, which was created for a full dome projection.
 - Title: "HORIZON: Beyond the Edge of the Visible Universe"
 - Director: Mr. Hiromitsu Kohsaka
 - Trailer: <u>https://www.youtube.com/watch?v=CQbZi4wfoaw</u>
 - Actors/actresses are humans, but the others are computer graphics. The music is original.

Plan: Your Work Today While watching the movie...

- You should watch the movie critically. The movie will show you:
 - The remarkable history of the Hubble-Lemaitre law and the CMB research
 - Intuitive explanation of the "power spectrum", and how we used this to determine the composition of the Universe
- The target audience of the movie is the general public. While the movie is pretty
 accurate scientifically, many important details are dropped.
 - If you wondered anything about the contents of the movie (both scientific and otherwise), write them down. Pretend that you are a critique of the movie.
- We spend the rest of today's lecture discussing your critique.

Lecture 1: Introduction

Hot, dense, opaque universe -> "Decoupling" (transparent universe) -> Structure Formation

From "Cosmic Voyage"

Sky in Optical (~0.5µm)

Sky in Microwave (~1mm)

Sky in Microwave (~1mm)

Light from the fireball Universe, filling our sky (2.7K)

The Cosmic Microwave Background (CMB)

410 photons per cubic centimeter!!

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

Prof. Hiranya Peiris (Univ. College London)

I:25 model of the antenna at Bell Lab The 3rd floor of Deutsches Museum

The real detector system used by Penzias & Wilson The 3rd floor of Deutsches Museum

715C.

own

Hornantennenanschluss

Horn antenna

15

Vergleichsquelle

Calibrator, cooled to 5K by liquid helium

MASER-Eigenrau Messung Rubin-M 10 000 liegt k DerV

SO D

May 20, 1964 CMB Discovered 6.7-2.3-0.8-0. $= 3.5 \pm 1.0 K$

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20.5.1964

Recording of the first measurement of cosmic microwave background₂ radiation taken on 5/20/1964.

Die

Der

Rau

zeiş Öff

Bei

He

Ve

Ei

SC

Spectrum of CMB = Planck Spectrum

WMAP Science Team Princeton, July 19, 2002

•WMAP was launched on June 30, 2001 The WMAP mission ended after 9 years of operation

Let's watch "HORIZON: Beyond the Edge of the Visible Universe"

Reminder: Your Work Today While watching the movie...

- You should watch the movie critically. The movie will show you:
 - The remarkable history of the Hubble-Lemaitre law and the CMB research
 - Intuitive explanation of the "power spectrum", and how we used this to determine the composition of the Universe
- The target audience of the movie is the general public. While the movie is pretty
 accurate scientifically, many important details are dropped.
 - If you wondered anything about the contents of the movie (both scientific and otherwise), write them down. Pretend that you are a critique of the movie.
- We spend the rest of today's lecture discussing your critique.

