Lecture 4

- Polarisation of the CMB (continued)
- Gravitational waves and their imprints on the CMB

The Single Most Important Thing You Need to Remember

 Polarisation is generated by the local quadrupole temperature anisotropy, which is proportional to Viscosity

(l,m)=(2,2)

Local quadrupole temperature anisotropy seen from an electron

Polarisation pattern you will see

E-mode Power Spectrum

Viscosity at the last-scattering surface is given by the velocity potential:

$$\pi_{\gamma} = -\frac{32}{45} \frac{\bar{\rho}_{\gamma}}{\sigma_{\tau} \bar{n}_{e}} \frac{\delta u_{\gamma}}{a^{2}}$$

• Velocity potential is $Sin(qr_L)$, whereas the temperature power spectrum is predominantly $Cos(qr_L)$

Bennett et al. (2013)

WMAP 9-year Power Spectrum

Planck Collaboration (2016)

Planck 29-mo Power Spectrum

South Pole Telescope Collaboration (2018)

SPTPol Power Spectrum

[1] Trough in T -> Peak in E

because $C_{I}^{TT} \sim cos^2(qr_s)$ whereas $C_{I}^{EE} \sim sin^2(qr_s)$

[2] T damps -> E rises

because T damps by viscosity, whereas E is created by viscosity

[3] E Peaks are sharper

because C_l^{TT} is the sum of cos²(qr_L) and Doppler shift's sin²(qr_L), whereas C_l^{EE} is just sin²(qr_L)

[1] Trough in T -> Peak in E

because $C_{I}^{TT} \sim cos^{2}(qr_{s})$ whereas $C_{I}^{EE} \sim sin^{2}(qr_{s})$

[2] T damps -> E rises

because T damps by viscosity, whereas E is created by viscosity

[3] E Peaks are sharper

because C_l^{TT} is the sum of cos²(qr_L) and Doppler shift's sin²(qr_L), whereas C_l^{EE} is just sin²(qr_L)

Cross-correlation between T and E

- Velocity potential is $Sin(qr_L)$, whereas the temperature power spectrum is predominantly $Cos(qr_L)$
- Thus, the TE correlation is Sin(qr_L)Cos(qr_L) which can change sign

Bennett et al. (2013)

WMAP 9-year Power Spectrum

Planck Collaboration (2016)

Planck 29-mo Power Spectrum

South Pole Telescope Collaboration (2018)

SPTPol Power Spectrum

TE correlation is useful for understanding physics

- Troughly traces gravitational potential, while E traces velocity $q^2\pi_\gamma\propto -q^2\delta u_\gamma\propto {f \nabla}\cdot {f v}_B$
- With TE, we witness how plasma falls into gravitational potential wells!

Coulson et al. (1994)

Example: Gravitational Effects

$$q^2 \pi_\gamma \propto -q^2 \delta u_\gamma \propto {oldsymbol
abla} \cdot {oldsymbol v}_B$$

TE correlation in angular space

First, let's define Stokes parameters in sphere

In this example, they are all Q<0

TE correlation in angular space

Komatsu et al. (2011); Planck Collaboration (2016)

Average Q polarisation around temperature hot spots

Gravitational Waves

• GW changes the distances between two points

Laser Interferometer

Laser Interferometer

LIGO detected GW from binary blackholes, with the wavelength of thousands of kilometres

But, the primordial GW affecting the CMB has a wavelength of **billions of light-years**!! How do we find it?

Detecting GW by CMB

Isotropic electro-magnetic fields

Detecting GW by CMB

Detecting GW by CMB

Generation and erasure of tensor quadrupole (viscosity)

- Gravitational waves create quadrupole temperature anisotropy [i.e., tensor viscosity of a photonbaryon fluid] gravitationally, without velocity potential
- Still, tight-coupling between photons and baryons erases the tensor viscosity exponentially before the last scattering

$$\left[\frac{\Delta T(\hat{n})}{T_0}\right]_{\rm ISW} = -\frac{1}{2} \sum_{ij} \int_{t_L}^{t_0} dt \ \dot{D}_{ij}(t,\hat{n}r)\hat{n}^i \hat{n}^j$$

negligible contribution before the last scattering

Propagation of cosmological gravitational waves

$$\ddot{D}_{ij} + \frac{3\dot{a}}{a}\dot{D}_{ij} - \frac{1}{a^2}\nabla^2 D_{ij} = 16\pi G\pi_{ij}^{\text{tensor}}$$

- Tensor anisotropic stress can do two things:
 - It can generate gravitational waves
 - It can *damp* gravitational waves (neutrino anisotropic stress)

But we shall ignore the tensor anisotropic stress for this lecture

Super-horizon Solution $\ddot{D}_{ij} + \frac{3\dot{a}}{a}\dot{D}_{ij} = 0$ $D_{ij} = \text{constant} + \text{decaying term}$

- Super-horizon tensor perturbation is conserved! [Remember ζ for the scalar perturbation]
 - Thus, no ISW temperature anisotropy on super-horizon scales
- It does not look like "gravitational waves", but it will start oscillating and behaving like waves once it enters the horizon

Matter-dominated Solution

$$D_{ij,\boldsymbol{q}}(t) = C_{ij,\boldsymbol{q}} \frac{3j_1(q\eta)}{q\eta} \propto \frac{1}{a(t)}$$
$$\dot{D}_{ij,\boldsymbol{q}}(t) = -C_{ij,\boldsymbol{q}} \frac{q}{a(t)} \frac{3j_2(q\eta)}{q\eta} \propto \frac{1}{a^2(t)}$$

- $\partial D_{ij}/\partial t$ gives the ISW. It peaks at the horizon crossing, $q\eta$ ~2
- The energy density is given by (∂D_{ij}/∂t)², which indeed decays like radiation, a⁻⁴

Scale-invariant Temperature C_I from GW 100.00 This is NOT a Silk-10.00 like damping! 1.00 It's not exponential, but a 0.10 power-law due simply to redshifts 10 100 1000

Detecting GW by CMB Polarisation

Detecting GW by CMB Polarisation

(l,m)=(2,2)

Local quadrupole temperature anisotropy seen from an electron

 E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon

 E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon

 E and B modes are produced nearly equally, but on small scales B is smaller than E because B vanishes on the horizon

