Lecture 2

- Temperature anisotropy from sound waves

Planck Collaboration (2016)

Planck 29-mo Power Spectrum

Cosmic Miso Soup

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- Think about a Miso soup (if you know what it is). Imagine throwing Tofus into a Miso soup, while changing the density of Miso
- And imagine watching how ripples are created and propagate throughout the soup

This is a **VISCOUS** fluid, in which the amplitude of sound waves **damps** at shorter wavelength

When do sound waves become important?

- In other words, when would the Sachs-Wolfe approximation (purely gravitational effects) become invalid?
- The key to the answer: **Sound-crossing Time**
- Sound waves cannot alter temperature anisotropy at a given angular scale if there was not enough time for sound waves to propagate to the corresponding distance at the last-scattering surface
 - The distance traveled by sound waves within a given time = The Sound Horizon

Comoving Photon Horizon

• First, the comoving distance traveled by photons is given by setting the space-time distance to be null:

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)dr^{2} = 0$$

$$r_{\text{photon}} = c \int_{0}^{t} \frac{dt'}{a(t')}$$

Comoving Sound Horizon

 Then, we replace the speed of light with a timedependent speed of sound:

$$r_s = \int_0^t \frac{dt'}{a(t')} c_s(t')$$

• We cannot ignore the effects of sound waves if $Qr_{s} > 1$

Sound Speed

• Sound speed of an adiabatic fluid is given by

$$c_s^2 = \delta P / \delta \rho$$

- **-** δP: pressure perturbation
- δρ: density perturbation
- For a baryon-photon system:

$$c_s^2 = \delta P_\gamma / (\delta \rho_\gamma + \delta \rho_B)$$

We can ignore the baryon pressure because it is much smaller than the photon pressure

Sound Speed

Using the adiabatic relationship between photons and baryons:

$$\delta \rho_B / \bar{\rho}_B = \delta \rho_\gamma / (\bar{\rho}_\gamma + \bar{P}_\gamma) = 3\delta \rho_\gamma / 4\bar{\rho}_\gamma$$

[i.e., the ratio of the number densities of baryons and photons is equal everywhere]

 and pressure-density relation of a relativistic fluid, δP_γ=δρ_γ/3, We obtain

$$c_s^2 = \delta P_\gamma / (\delta \rho_\gamma + \delta \rho_B) = 1/3(1 + 3\bar{\rho}_B / 4\bar{\rho}_\gamma)$$

• Or equivalently

sound speed is reduced!

where

 $R \equiv 3\bar{\rho}_B$

Value of R?

- The baryon mass density goes like a⁻³, whereas the photon energy density goes like a⁻⁴. Thus, the ratio of the two, R, goes like a.
- The proportionality constant is:

$$R = \frac{3\Omega_B}{4\Omega_\gamma} \frac{a}{a_0} = 0.6120 \left(\frac{\Omega_B h^2}{0.022}\right) \frac{1091}{1+z}$$

where we used

$$\Omega_{\gamma} \equiv rac{8\pi G
ho_{\gamma 0}}{3H_0^2} = 2.471 imes 10^{-5} \ h^{-2}$$
 for $T_0 = 2.725 \ {
m K}$

For the last-scattering redshift of $z_L=1090$ (or last-scattering temperature of $T_L=2974$ K),

$r_s = 145.3 \text{ Mpc}$

We cannot ignore the effects of sound waves if qr_s>1. Since I~qr_L, this means

$| > r_L/r_s = 96$

where we used r_L=13.95 Gpc

Creation of Sound Waves: Basic Equations

- 1. Conservation equations (energy and momentum)
- 2. Equation of state, relating pressure to energy density $P = P(\rho)$
- 3. General relativistic version of the "Poisson equation", relating gravitational potential to energy density $\nabla^2 \Phi(t, \boldsymbol{x}) = 4\pi G a^2(t) \delta \rho_M(t, \boldsymbol{x})$
- 4. Evolution of the "anisotropic stress" (viscosity)

Energy Conservation

Total energy conservation:

$$\sum_{\alpha} \left\{ \delta \dot{\rho}_{\alpha} + \frac{\dot{a}}{a} (3\delta \rho_{\alpha} + 3\delta P_{\alpha} + \nabla^{2} \pi_{\alpha}) - 3(\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \dot{\Psi} + \frac{1}{a^{2}} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \nabla^{2} \delta u_{\alpha} \right\} = 0, \qquad \text{anisotropic stress:} \\ \left\{ \frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \nabla^{2} \delta u_{\alpha} \right\} = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{1}{a^{2}} \partial_{i} \partial_{j} \pi \right] = 0, \qquad \text{anisotropic stress:} \\ \left[\frac{\partial \dot{\rho}_{\alpha}}{\partial \tau_{ij}} + \frac{\partial \dot{\rho}_$$

• C.f., Total energy conservation [unperturbed]

$$\sum_{\alpha} \left[\dot{\bar{\rho}}_{\alpha} + \frac{3\dot{a}}{a} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \right] = 0$$

Energy Conservation

Total energy conservation:

$$egin{aligned} &\sum\limits_lpha \left\{\delta \dot{
ho}_lpha + rac{\dot{a}}{a}(3\delta
ho_lpha + 3\delta P_lpha +
abla^2 \pi_lpha) - 3(ar{
ho}_lpha + ar{P}_lpha) \dot{\Psi}
ight. \ &+ rac{1}{a^2}(ar{
ho}_lpha + ar{P}_lpha)
abla^2 \delta u_lpha
ight\} = 0 \,, \end{aligned}$$

 Again, this is the effect of locally-defined inhomogeneous scale factor, i.e.,

• The spatial metric is given by $ds^2 = a^2(t) \exp(-2\Psi) d\mathbf{x}^2$

• Thus, locally we can define a new scale factor:

$$\tilde{a}(t, \mathbf{x}) = a(t) \exp(-\Psi)$$

Energy Conservation

Total energy conservation:

$$\sum_{\alpha} \left\{ \delta \dot{\rho}_{\alpha} + \frac{\dot{a}}{a} (3\delta \rho_{\alpha} + 3\delta P_{\alpha} + \nabla^2 \pi_{\alpha}) - 3(\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \dot{\Psi} + \frac{1}{a^2} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \nabla^2 \delta u_{\alpha} \right\} = 0,$$

 Momentum flux going outward (inward) -> reduction (increase) in the energy density

C.f., for a non-expanding medium: $\dot{\rho} + \nabla \cdot (\rho \mathbf{v}) = 0$

Momentum Conservation

Total momentum conservation

$$\sum_{\alpha} \left\{ \frac{\partial}{\partial t} [(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha}] + \frac{3\dot{a}}{a} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha} + (\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\Phi + \delta P_{\alpha} + \nabla^{2}\pi_{\alpha} \right\} = 0,$$

- Cosmological redshift of the momentum
- Gravitational force given by potential gradient
- Force given by pressure gradient
- Force given by gradient of anisotropic stress

Equation of State

- Pressure of non-relativistic species (i.e., baryons and cold dark matter) can be ignored relative to the energy density. Thus, we set them to zero: $P_B=0=P_D$ and $\delta P_B=0=\delta P_D$
- <u>Unperturbed</u> pressure of relativistic species (i.e., photons and relativistic neutrinos) is given by the third of the energy density, i.e., $P_{\gamma}=\rho_{\gamma}/3$ and $P_{\nu}=\rho_{\nu}/3$
- <u>Perturbed</u> pressure involves contributions from the **bulk VISCOSITY**: $\delta P_{\gamma} = (\delta \rho_{\gamma} - \nabla^2 \pi_{\gamma})/3$ $\delta P_{\nu} = (\delta \rho_{\nu} - \nabla^2 \pi_{\nu})/3$

• <u>Perturbed</u> pressure involves contributions from the **bulk Viscosity**: $\delta P_{\gamma} = (\delta \rho_{\gamma} - \nabla^2 \pi_{\gamma})/3$ $\delta P_{\nu} = (\delta \rho_{\nu} - \nabla^2 \pi_{\nu})/3$

Two Remarks

- In the standard scenario:
 - Energy densities are conserved separately; thus we do not need to sum over all species
 - Momentum densities of photons and baryons are NOT conserved separately but they are coupled via Thomson scattering. This must be taken into account when writing down separate conservation equations

Conservation Equations for Photons and Baryons

• Fourier transformation replaces $\nabla^2 \rightarrow -q^2$ $X(t, \boldsymbol{x}) = (2\pi)^{-3} \int d^3q \ X_{\boldsymbol{q}}(t) \exp(i\boldsymbol{q} \cdot \boldsymbol{x})$ $\frac{\partial}{\partial t} (\delta \rho_{\gamma} / \bar{\rho}_{\gamma}) - \frac{4q^2}{3a^2} \delta u_{\gamma} = 4\dot{\Psi}$ $\frac{\partial}{\partial t} (\delta \rho_B / \bar{\rho}_B) - \frac{q^2}{a^2} \delta u_B = 3\dot{\Psi}$ transfer via scattering $\begin{aligned} a\frac{\partial}{\partial t}(\delta u_{\gamma}/a) + \Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^{2}\pi_{\gamma}}{2\bar{\rho}_{\gamma}} &= & \sigma_{\mathcal{T}}\bar{n}_{e}(\delta u_{B} - \delta u_{\gamma}) \\ & \delta\dot{u}_{B} + \Phi &= & -\frac{\sigma_{\mathcal{T}}\bar{n}_{e}}{R}(\delta u_{B} - \delta u_{\gamma}) \end{aligned}$ $R \equiv 3\bar{\rho}_B/4\bar{\rho}_\gamma$

Conservation Equations for Photons and Baryons

• Fourier transformation replaces $\nabla^2 \rightarrow -q^2$ $X(t, \boldsymbol{x}) = (2\pi)^{-3} \int d^3q \ X_{\boldsymbol{q}}(t) \exp(i\boldsymbol{q} \cdot \boldsymbol{x})$ $\frac{\partial}{\partial t} (\delta \rho_{\gamma} / \bar{\rho}_{\gamma}) - \frac{4q^2}{3a^2} \delta u_{\gamma} = 4\dot{\Psi}$ $\frac{\partial}{\partial t} (\delta \rho_B / \bar{\rho}_B) - \frac{q^2}{a^2} \delta u_B = 3 \dot{\Psi}$ what about $a\frac{\partial}{\partial t}(\delta u_{\gamma}/a) + \Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^{2}\pi_{\gamma}}{2\bar{\rho}_{\gamma}} \stackrel{\text{what about}}{=} \sigma_{\mathcal{T}}\bar{n}_{e}(\delta u_{B} - \delta u_{\gamma})$ $\delta \dot{u}_B + \Phi = -\frac{\sigma_T n_e}{R} (\delta u_B - \delta u_\gamma)$

 $R \equiv 3\bar{\rho}_B/4\bar{\rho}_\gamma$

Peebles & Yu (1970); Sunyaev & Zeldovich (1970)

Formation of a Photon-baryon Fluid

- Photons are not a fluid. Photons free-stream at the speed of light
 - The conservation equations are not enough because we need to specify the evolution of viscosity
 - Solving for viscosity requires information of the phase-space distribution function of photons: Boltzmann equation
- However, frequent scattering of photons with baryons* can make photons behave as a fluid: Photon-baryon fluid

*Photons scatter with electrons via Thomson scattering. Protons scatter with electrons via Coulomb scattering. Thus we can say, effectively, photons scatter with baryons

Let's solve them!

• Fourier transformation replaces $\nabla^2 \rightarrow -q^2$ $X(t, \boldsymbol{x}) = (2\pi)^{-3} \int d^3q \ X_{\boldsymbol{q}}(t) \exp(i\boldsymbol{q} \cdot \boldsymbol{x})$ $\frac{\partial}{\partial t} \left(\delta \rho_{\gamma} / \bar{\rho}_{\gamma} \right) - \frac{4q^2}{3a^2} \delta u_{\gamma} = 4 \dot{\Psi}$ $\frac{\partial}{\partial t} (\delta \rho_B / \bar{\rho}_B) - \frac{q^2}{a^2} \delta u_B = 3\dot{\Psi}$ $a\frac{\partial}{\partial t}(\delta u_{\gamma}/a) + \Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^2\pi_{\gamma}}{2\bar{\rho}_{\gamma}} = \sigma_{\mathcal{T}}\bar{n}_e(\delta u_B - \delta u_{\gamma})$ $\delta \dot{u}_B + \Phi = -\frac{\sigma_T \bar{n}_e}{R} (\delta u_B - \delta u_\gamma)$

 $R \equiv 3\bar{\rho}_B/4\bar{\rho}_\gamma$

Tight-coupling Approximation

• When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write

$$\delta u_B - \delta u_\gamma = d/\sigma_T \bar{n}_e$$

[d is an arbitrary dimensionless variable]

• And take $\sigma_{\mathcal{T}} ar{n}_e o \infty$ *. We obtain

$$arac{\partial}{\partial t}(\delta u_{\gamma}/a)+\varPhi+rac{\delta
ho_{\gamma}}{4ar
ho_{\gamma}}=d\,,\qquad \delta \dot{u}_{\gamma}+\varPhi=-rac{d}{R}$$

*In this limit, viscosity π_{γ} is exponentially suppressed. This result comes from the Boltzmann equation but we do not derive it here. It makes sense physically.

Tight-coupling Approximation

• Eliminating *d* and using the fact that R is proportional to the scale factor, we obtain

$$a\frac{\partial}{\partial t}\left[(1+R)\delta u_{\gamma}/a\right] + (1+R)\Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} = 0$$

 Using the energy conservation to replace δu_γ with δρ_γ/ρ_γ, we obtain

$$\frac{1}{a(1+R)}\frac{\partial}{\partial t}\left[a(1+R)\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}-4\Psi)\right] + \frac{4q^2}{3a^2}\Phi + \frac{q^2}{a^2}\frac{\delta\rho_{\gamma}/\bar{\rho}_{\gamma}}{3(1+R)} = 0$$

Wave Equation, with the speed of sound of $c_{s^2} = 1/3(1+R)!$

Sound Wave!

- To simplify the equation, let's first look at the highfrequency solution
 - Specifically, we take q >> aH (the wavelength of fluctuations is much shorter than the Hubble length). Then we can ignore time derivatives of R and Ψ because they evolve in the Hubble time scale:

$$\frac{1}{a}\frac{\partial}{\partial t}\left[a\frac{\partial}{\partial t}\left(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}\right)\right] + \frac{q^{2}c_{s}^{2}}{a^{2}}\left[\delta\rho_{\gamma}/\bar{\rho}_{\gamma} + 4(1+R)\Phi\right] = 0$$

Solution: SOUND WAVE!

$$\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = A\cos(qr_s) + B\sin(qr_s) - R\Phi_{\gamma}$$

Recap

- Photons are not a fluid; but Thomson scattering couples photons to baryons, forming a photon-baryon fluid
- The reduced sound speed, c_s²=1/3(1+R), emerges automatically
- $\delta \rho_{\gamma}/4 \rho_{\gamma}$ is the temperature anisotropy at the bottom of the potential well. Adding gravitational redshift, the observed temperature anisotropy is $\delta \rho_{\gamma}/4 \rho_{\gamma} + \Phi$, $+\Phi(t_L)$ which is given by

$$\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = A\cos(qr_s) + B\sin(qr_s) - R\Phi \int_{\bar{\tau}}^{\Lambda} \frac{\delta r_{\gamma}}{\bar{\tau}}$$

Stone: Fluctuations "entering the horizon"

- This is a tricky concept, but it is important
- Suppose that there are fluctuations at all wavelengths, including the ones that exceed the Hubble length (which we loosely call our "horizon")
 - Let's not ask the origin of these "super-horizon fluctuations", but just assume their existence
- As the Universe expands, our horizon grows and we can see longer and longer wavelengths
 - Fluctuations "entering the horizon"

Three Regimes

- Super-horizon scales [q < aH]
 - Only gravity is important
 - Evolution differs from Newtonian
- Sub-horizon but super-sound-horizon [aH < q < aH/c_s]
 - Only gravity is important
 - Evolution similar to Newtonian
- Sub-sound-horizon scales [q > aH/c_s]
 - Hydrodynamics important -> Sound waves

QEQ

- Which fluctuation entered the horizon before the matterradiation equality?
- $q_{EQ} = a_{EQ}H_{EQ} \sim 0.01 (\Omega_M h^2/0.14) Mpc^{-1}$
- At the last scattering surface, this subtends the multipole of $I_{EQ} = Q_{EQ}r_L \sim 140$

1

(E.Komatsu, May 9, 2000)

Peak Locations?
High-frequency solution, for q >> aH

$$\frac{\delta \rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = A\cos(qr_s) + B\sin(qr_s) - R\Phi$$

- VERY roughly speaking, the angular power spectrum C_I is given by $\left[\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi\right]^2$ with q -> I/r_L
 - <u>Question</u>: What are the integration constants, **A** and **B**?
 - <u>Answer</u>: They depend on the initial conditions; namely, adiabatic or not?
 - For adiabatic initial condition, A >> B when q is large

[We will show it later.]

Peak Locations? <u>High-frequency solution, for q >> aH</u>

$$\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = A\cos(qr_s) + B\sin(qr_s) - R\Phi$$

- VERY roughly speaking, the angular power spectrum C_{l} is given by $\left[\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi\right]^{2}$ with q -> l/r_L
- If A>>B, the locations of peaks are

$$\ell = (1, 2, \cdots) \pi r_L / r_s(t_L) = (1, 2, \cdots) \times 302$$

<u>Fffoot of Rarvon - Donsity</u> 110 The simple estimates do 100 not match! 90 80 This is simply because 70these angular scales do 60 5c not satisfy q >> aH, i.e, the oscillations are not pure 40

 $\Delta T_1 \ [\mu K]$

30

20

10

^c <u>We need a better solution!</u> ⁰

т

cosine even for the

adiabatic initial condition.

Going back to the original tight-coupling equation..

$$\frac{1}{a(1+R)}\frac{\partial}{\partial t}\left[a(1+R)\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}-4\Psi)\right] + \frac{4q^{2}}{3a^{2}}\Phi + \frac{q^{2}}{a^{2}}\frac{\delta\rho_{\gamma}/\bar{\rho}_{\gamma}}{3(1+R)} = 0$$

- In the radiation-dominated era, R << 1
- Change the independent variable from the time (t) to

$$\varphi \equiv qr_s = 2qt/\sqrt{3}a$$

Then the equation simplifies to

$$\partial^2 X / \partial \varphi^2 + X + \Phi + \Psi = 0$$

where $X\equiv \delta\rho_{\gamma}/4\bar{\rho}_{\gamma}-\Psi$

- In the radiation-dominated era, R << 1
- Change the independent variable from the time (t) to

$$\varphi \equiv qr_s = 2qt/\sqrt{3}a$$

Then the equation simplifies to

$$\partial^2 X / \partial \varphi^2 + X + \Phi + \Psi = 0$$

where
$$X \equiv \delta \rho_{\gamma} / 4 \bar{\rho}_{\gamma} - \Psi$$

The solution is

$$X = \tilde{A}\cos\varphi + \tilde{B}\sin\varphi - \int_0^{\varphi} d\varphi' \sin(\varphi - \varphi')(\Phi + \Psi)(\varphi')$$

Then the equation simplifies to

$$\partial^2 X / \partial \varphi^2 + X + \Phi + \Psi = 0$$

where
$$X\equiv \delta\rho_{\gamma}/4\bar{\rho}_{\gamma}-\Psi$$

The solution is

$$X = (\tilde{A} + \Delta A) \cos \varphi + (\tilde{B} + \Delta B) \sin \varphi$$

where
$$\Delta A(\varphi) \equiv \int_0^{\varphi} d\varphi' \sin \varphi' (\Phi + \Psi)(\varphi'),$$

 $\Delta B(\varphi) \equiv -\int_0^{\varphi} d\varphi' \cos \varphi' (\Phi + \Psi)(\varphi')$

- Now we need to know Newton's gravitational potential, φ, and the scalar curvature perturbation, ψ.
- Einstein's equations let's look up any text books:

$$\nabla^{2}\Psi = 4\pi Ga^{2}\sum_{\alpha} \left[\delta\rho_{\alpha} - \frac{3\dot{a}}{a}(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha}\right]$$
$$\dot{\Psi} + \frac{\dot{a}}{a}\Phi = -4\pi G\sum_{\alpha}(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha}$$
$$\partial_{i}\partial_{j}(\Phi - \Psi) = -8\pi Ga^{2}\partial_{i}\partial_{j}\sum_{\alpha}\pi_{\alpha}$$

- Now we need to know Newton's gravitational potential, φ, and the scalar curvature perturbation, ψ.
- Einstein's equations let's look up any text books:

$$\nabla^{2}\Psi = 4\pi Ga^{2}\sum_{\alpha} \left[\delta\rho_{\alpha} - \frac{3\dot{a}}{a}(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha}\right]$$
$$\dot{\Psi} + \frac{\dot{a}}{a}\Phi = -4\pi G\sum_{\alpha}(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\delta u_{\alpha}$$
$$\partial_{i}\partial_{j}(\Phi - \Psi) = -8\pi Ga^{2}\partial_{i}\partial_{j}\sum_{\alpha}\pi_{\alpha}$$

- Now we need to know Newton's gravitational potential, φ, and the scalar curvature perturbation, ψ.
- Einstein's equations let's look up any text books:

$$\nabla^{2} \Psi = 4\pi G a^{2} \sum_{\alpha} \left[\delta \rho_{\alpha} - \frac{3\dot{a}}{a} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \delta u_{\alpha} \right]$$
$$\dot{\Psi} + \frac{\dot{a}}{a} \Phi = -4\pi G \sum_{\alpha} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \delta u_{\alpha}$$
$$\partial_{i} \partial_{j} (\Phi - \Psi) = -8\pi G a^{2} \partial_{i} \partial_{j} \pi_{\nu}$$
$$\overset{\text{Will come back to}}{\underset{\text{this later.}}{}} For now, let's ignore any viscosity.$$

- Now we need to know Newton's gravitational potential, φ, and the scalar curvature perturbation, ψ.
- Einstein's equations let's look up any text books:

$$\nabla^{2}\Psi = 4\pi Ga^{2} \sum_{\alpha} \left[\delta\rho_{\alpha} - \frac{3\dot{a}}{a} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \delta u_{\alpha} \right]$$
$$\dot{\Psi} + \frac{\dot{a}}{a} \Phi = -4\pi G \sum_{\alpha} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \delta u_{\alpha}$$
$$\Psi = \Psi$$
Will come back to this later.
For now, let's ignore any viscosity

Einstein's Equations in Radiation-dominated Era

- Now we need to know Newton's gravitational potential, ϕ , and the scalar curvature perturbation, ψ .
- Einstein's equations let's look up any text books:

$$\frac{\partial^{2} \Phi}{\partial \varphi^{2}} + \frac{4}{\varphi} \frac{\partial \Phi}{\partial \varphi} + \Phi = \frac{3}{2\varphi^{2}} \frac{\delta \mathcal{P}}{\bar{\rho}_{R}}$$

$$\sum_{\alpha} \delta P_{\alpha}(t, \mathbf{x}) = \frac{\sum_{\alpha} \dot{\bar{P}}_{\alpha}(t)}{\sum_{\alpha} \dot{\bar{\rho}}_{\alpha}(t)} \sum_{\alpha} \delta \rho_{\alpha}(t, \mathbf{x}) + \frac{\delta \mathcal{P}(t, \mathbf{x})}{\delta \mathcal{P}(t, \mathbf{x})}$$

Einstein's Equations in Radiation-dominated Era

- Now we need to know Newton's gravitational potential, ϕ , and the scalar curvature perturbation, ψ .
- Einstein's equations let's look up any text books:

Kodama & Sasaki (1986, 1987)

Solution (Adiabatic) in Radiation-dominated Era

$$\Phi_{\rm ADI} = -2\zeta(\sin\varphi - \varphi\cos\varphi)/\varphi^3$$

where
$$arphi \equiv q r_s = 2 q t / \sqrt{3} a$$

- Low-frequency limit (super-sound-horizon scales, $qr_s \ll 1$)
 - $\Phi_{ADI} \rightarrow -2\zeta/3 = constant$
- High-frequency limit (sub-sound-horizon scales, qr_s >> 1)

•
$$\Phi_{\rm ADI} \rightarrow 2\zeta \cos arphi / arphi^2 \propto a^{-2}$$
 damp

Solution (Adiabatic) in Radiation-dominated Era

$$\Phi_{\rm ADI} = -2\zeta(\sin\varphi - \varphi\cos\varphi)/\varphi^3$$

wh

Poisson Equation $-q^{2} \Phi = 4\pi G a^{2} \delta \rho$ cales, $qr_{s} << 1$) & oscillation solution for radiation $\delta \rho_{R} / \bar{\rho}_{R} \propto \cos \varphi$ High-frequency $\Phi_{ADI} -> 2\zeta \cos \varphi / \varphi^{2} \propto a^{-2} \text{ damp}$

Solution (Adiabatic) in Radiation-dominated Era

$$\Phi_{\rm ADI} = -2\zeta(\sin\varphi - \varphi\cos\varphi)/\varphi^3$$

where
$$arphi \equiv q r_s = 2 q t / \sqrt{3} a$$

• Low-frequency limit (super-sound-horizon scales, $qr_s \ll 1$)

•
$$\Phi_{ADI} \rightarrow -2\zeta/3 = constant$$

• High-frequency limit (*sub-sound-horizon scales, qr*_s >> 1)

•
$$\Phi_{\rm ADI} \rightarrow 2\zeta \cos arphi / arphi^2 \propto a^{-2}$$
 damp

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)

Conserved on large scales

- For the adiabatic initial condition, there exists a useful quantity,
 ζ, which remains constant on large scales (super-horizon scales, q << aH) regardless of the contents of the Universe
 - ζ is conserved regardless of whether the Universe is radiation-dominated, matter-dominated, or whatever
- Energy conservation for q << aH:

$$\delta\dot{\rho}_{\alpha} + \frac{3\dot{a}}{a}(\delta\rho_{\alpha} + \delta P_{\alpha}) - 3(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\dot{\Psi} = 0$$

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)

Conserved on large scales

C:

• If pressure is a function of the energy density only, i.e., $P_{\alpha} = P_{\alpha}(\rho_{\alpha})$, then

$$\frac{1}{3} \frac{\delta \rho_{\alpha}(t, \boldsymbol{x})}{\bar{\rho}_{\alpha}(t) + \bar{P}_{\alpha}(t)} - \Psi(t, \boldsymbol{x}) = \underbrace{\zeta_{\alpha}(\boldsymbol{x})}_{\text{integration constant}}$$

$$\delta \dot{\rho}_{\alpha} + \frac{3\dot{a}}{a} (\delta \rho_{\alpha} + \delta P_{\alpha}) - 3(\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \dot{\Psi} = 0$$

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)

Conserved on large scales

(:

• If pressure is a function of the energy density only, i.e., $P_{\alpha} = P_{\alpha}(\rho_{\alpha})$, then

$$\frac{1}{3} \frac{\delta \rho_{\alpha}(t, \boldsymbol{x})}{\bar{\rho}_{\alpha}(t) + \bar{P}_{\alpha}(t)} - \Psi(t, \boldsymbol{x}) = \frac{\zeta_{\alpha}(\boldsymbol{x})}{_{\text{integration constant}}}$$

For the adiabatic initial condition, all species share the same value of ζ_{α} , i.e., $\zeta_{\alpha} = \zeta$

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the Radiation-dominated Era

The solution is

$$X = (\tilde{A} + \Delta A) \cos \varphi + (\tilde{B} + \Delta B) \sin \varphi$$

$$\begin{split} X &\equiv \delta \rho_{\gamma} / 4 \bar{\rho}_{\gamma} - \Psi \\ \Delta A(\varphi) &\equiv \int_{0}^{\varphi} d\varphi' \sin \varphi' (\Phi + \Psi)(\varphi') = -2\zeta \left(1 - \sin^{2} \varphi / \varphi^{2}\right) \\ \Delta B(\varphi) &\equiv -\int_{0}^{\varphi} d\varphi' \cos \varphi' (\Phi + \Psi)(\varphi') \\ &= 2\zeta \left(\varphi - \cos \varphi \sin \varphi\right) / \varphi^{2} \end{split}$$

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the Radiation-dominated Era

The solution is

$$X = (\tilde{A} + \Delta A) \cos \varphi + (\tilde{B} + \Delta B) \sin \varphi$$

$$\begin{split} X &\equiv \delta \rho_{\gamma} / 4 \bar{\rho}_{\gamma} - \Psi \xrightarrow{\varphi \ll 1} \zeta \quad \text{i.e., } \tilde{A}_{\text{ADI}} = \zeta, \quad \tilde{B}_{\text{ADI}} = 0 \\ \Delta A(\varphi) &\equiv \int_{0}^{\varphi} d\varphi' \sin \varphi' (\Phi + \Psi)(\varphi') = -2\zeta \left(1 - \sin^{2} \varphi / \varphi^{2}\right) \\ \Delta B(\varphi) &\equiv -\int_{0}^{\varphi} d\varphi' \cos \varphi' (\Phi + \Psi)(\varphi') \\ &= 2\zeta \left(\varphi - \cos \varphi \sin \varphi\right) / \varphi^{2} \end{split}$$

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the Radiation-dominated Era

The adiabatic solution is

$$X = \frac{\delta \rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \Psi = \zeta \left(-\cos\varphi + \frac{2}{\varphi}\sin\varphi \right)$$

with

$$\Phi = \Psi = -2\zeta(\sin\varphi - \varphi\cos\varphi)/\varphi^3$$

Therefore, the solution is a **pure cosine** only in the **high-frequency** limit!

Roles of viscosity

- Neutrino viscosity
 - Modify potentials: $\partial_i \partial_j (\varPhi \Psi) = -8\pi G a^2 \partial_i \partial_j \pi_
 u$

- Photon viscosity
 - Viscous photon-baryon fluid: damping of sound waves

$$a\frac{\partial}{\partial t}(\delta u_{\gamma}/a) + \Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^2\pi_{\gamma}}{2\bar{\rho}_{\gamma}}$$

Silk (1968) "Silk damping"

$$\sigma_{\mathcal{T}}\bar{n}_e(\delta u_B - \delta u_\gamma)$$

High-frequency solution without neutrino viscosity

The solution is

$$X = (\zeta + \Delta A) \cos \varphi + (\Delta B) \sin \varphi$$

$$\begin{split} X &\equiv \delta \rho_{\gamma} / 4 \bar{\rho}_{\gamma} - \Psi \\ \Delta A(\varphi) &\equiv \int_{0}^{\varphi} d\varphi' \sin \varphi' (\Phi + \Psi)(\varphi') = -2\zeta \left(1 - \sin^{2} \varphi / \varphi^{2}\right) \\ \Delta B(\varphi) &\equiv -\int_{0}^{\varphi} d\varphi' \cos \varphi' (\Phi + \Psi)(\varphi') \longrightarrow -2\zeta \\ &= 2\zeta \left(\varphi - \cos \varphi \sin \varphi\right) / \varphi^{2} \longrightarrow 0 \end{split}$$

Chluba & Grin (2013)

 $R_{\nu} \equiv \bar{\rho}_{\nu} / (\bar{\rho}_{\gamma} + \bar{\rho}_{\nu}) \\\approx 0.409$

High-frequency solution with neutrino viscosity

The solution is

$$X = (-\zeta + \Delta A_{\nu})\cos\varphi + \Delta B_{\nu}\sin\varphi$$

$$X \equiv \delta \rho_{\gamma} / 4 \bar{\rho}_{\gamma} - \Psi$$

$$\Delta A_{\nu} \longrightarrow 0.338 R_{\nu} \zeta$$

$$\Delta B_{\nu} \longrightarrow 0.418 R_{\nu} \zeta$$
non-zero value!

High-frequency solution with neutrino viscosity

The solution is

$$X = -C\cos(\varphi + \theta)$$

$$C \equiv \sqrt{(-\zeta + \Delta A_{\nu})^2 + \Delta B_{\nu}^2}$$

$$pprox \zeta (1 + 4 R_
u / 15)^{-1}$$
 Hu & Sugiyama (1996)

$$an heta = - rac{\Delta B_{
u}}{-\zeta + \Delta A_{
u}} pprox 0.063 \pi$$
 Phase shift! Bashinsky & Seljak (2004)

High-frequency solution Thus, the neutrino viscosity will: The s X(1) Reduce the amplitude of sound waves at large multipoles (2) Shift the peak positions of the temperature power spectrum $\frac{\Delta B_{\nu}}{-\zeta + \Lambda \Lambda}$ an heta $pprox 0.063\pi$ **Phase shift!** Bashinsky & Seljak (2004)

Photon Viscosity

- In the tight-coupling approximation, the photon viscosity damps exponentially
- To take into account a non-zero photon viscosity, we go to a higher order in the tight-coupling approximation

Tight-coupling Approximation (1st-order)

• When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write

$$\delta u_B - \delta u_\gamma = d/\sigma_{\mathcal{T}}\bar{n}_e$$

[d is an arbitrary dimensionless variable]

• And take $\sigma_{\mathcal{T}} ar{n}_e o \infty$ *. We obtain

$$arac{\partial}{\partial t}(\delta u_{\gamma}/a)+\varPhi+rac{\delta
ho_{\gamma}}{4ar
ho_{\gamma}}=d\,,\qquad \delta \dot{u}_{\gamma}+\varPhi=-rac{d}{R}$$

*In this limit, viscosity π_{γ} is exponentially suppressed. This result comes from the Boltzmann equation but we do not derive it here. It makes sense physically.

Tight-coupling Approximation (2nd-order)

• When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write

$$\delta u_B - \delta u_\gamma = d_1 / \sigma_\mathcal{T} ar{n}_e + q d_2 / (\sigma_\mathcal{T} ar{n}_e)^2$$
 $_{ ext{where}}$
 $d_1 = -R(\delta \dot{u}_\gamma + \Phi)$ [d2 is an arbitrary dimensionless variables]

- And take $\sigma_{\mathcal{T}} ar{n}_e o \infty$. We obtain

$$\begin{aligned} a\frac{\partial}{\partial t}(\delta u_{\gamma}/a) + \Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^{2}\pi_{\gamma}}{2\bar{\rho}_{\gamma}} &= -R(\delta \dot{u}_{\gamma} + \Phi) + \frac{q}{\sigma_{\mathcal{T}}\bar{n}_{e}} d_{2}^{2} \\ & \frac{\partial}{\partial t} \left[\frac{R(\delta \dot{u}_{\gamma} + \Phi)}{\sigma_{\mathcal{T}}\bar{n}_{e}} \right] &= \frac{q}{R\sigma_{\mathcal{T}}\bar{n}_{e}} d_{2} \end{aligned}$$

Tight-coupling Approximation (2nd-order)

• Eliminating *d*₂ and using the fact that R is proportional to the scale factor, we obtain

$$a\frac{\partial}{\partial t}\left[(1+R)\delta u_{\gamma}/a\right] + (1+R)\Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^{2}\pi_{\gamma}}{2\bar{\rho}_{\gamma}} + R\frac{\partial}{\partial t}\left[\frac{R(\delta\dot{u}_{\gamma}+\Phi)}{\sigma_{\mathcal{T}}\bar{n}_{e}}\right] = 0$$

 Getting π_γ requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is

$$\pi_{\gamma} = -\frac{32}{45} \frac{\bar{\rho}_{\gamma}}{\sigma_{\tau} \bar{n}_{e}} \frac{\delta u_{\gamma}}{a^{2}}$$

Kaiser (1983)

Tight-coupling Approximation (2nd-order)

 Eliminating d₂ and using the fact that R is proportional to the scale factor, we obtain

$$a\frac{\partial}{\partial t}\left[(1+R)\delta u_{\gamma}/a\right] + (1+R)\Phi + \frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} - \frac{q^{2}\pi_{\gamma}}{2\bar{\rho}_{\gamma}} + R\frac{\partial}{\partial t}\left[\frac{R(\delta\dot{u}_{\gamma}+\Phi)}{\sigma_{\mathcal{T}}\bar{n}_{e}}\right] = 0$$

• Getting π_{γ} requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is given by the velocity potential

 $-\frac{32}{45}\frac{\bar{\rho}_{\gamma}}{\sigma_{\tau}\bar{n}_{e}}\frac{\delta u_{\gamma}}{a^{2}}$

Kaiser (1983)
• Using the energy conservation to replace δu_{γ} with $\delta \rho_{\gamma} / \rho_{\gamma}$, we obtain, for q >> aH,

$$\frac{1}{a}\frac{\partial}{\partial t}\left[a\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma})\right] + 2\Gamma\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}) + \frac{q^{2}c_{s}^{2}}{a^{2}}\left[\delta\rho_{\gamma}/\bar{\rho}_{\gamma} + 4(1+R)\Phi\right] = 0$$

New term, giving damping!

where

$$\Gamma(q,t) \equiv \frac{q^2}{6a^2 \sigma_{\mathcal{T}} \bar{n}_e} \left[\frac{16}{15(1+R)} + \frac{R^2}{(1+R)^2} \right]$$

• Using the energy conservation to replace δu_{γ} with $\delta \rho_{\gamma} / \rho_{\gamma}$, we obtain, for q >> aH,

$$\frac{1}{a}\frac{\partial}{\partial t}\left[a\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma})\right] + 2\Gamma\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}) + \frac{q^{2}c_{s}^{2}}{a^{2}}\left[\delta\rho_{\gamma}/\bar{\rho}_{\gamma} + 4(1+R)\Phi\right] = 0$$
New term, giving damping!

where Important for high frequencies

$$\Gamma(q,t) \equiv \frac{q^2}{6a^2\sigma_{\mathcal{T}}\bar{n}_e} \left[\frac{16}{15(1+R)} + \frac{R^2}{(1+R)^2} \right]$$

• Using the energy conservation to replace δu_{γ} with $\delta \rho_{\gamma} / \rho_{\gamma}$, we obtain, for q >> aH,

$$\frac{1}{a}\frac{\partial}{\partial t}\left[a\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma})\right] + 2\Gamma\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}) + \frac{q^{2}c_{s}^{2}}{a^{2}}\left[\delta\rho_{\gamma}/\bar{\rho}_{\gamma} + 4(1+R)\Phi\right] = 0$$

New term, giving damping!

SOLUTION:

$$\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = \left[A\cos(qr_s) + B\sin(qr_s)\right] \exp\left[-\int_0^t dt' \ \Gamma(q,t')\right] - R\Phi$$

Exponential dampling!

• Using the energy conservation to replace δu_v with $\delta \rho_v / \rho_v$, we obtain, for q >> aH,

$$\frac{1}{a}\frac{\partial}{\partial t}\left[a\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma})\right] + 2\Gamma\frac{\partial}{\partial t}(\delta\rho_{\gamma}/\bar{\rho}_{\gamma}) + \frac{q^{2}c_{s}^{2}}{a^{2}}\left[\delta\rho_{\gamma}/\bar{\rho}_{\gamma} + 4(1+R)\Phi\right] = 0$$

New term, giving damping!

SOLUTION:

$$\frac{\delta\rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi = [A\cos(qr_s) + B\sin(qr_s)]\exp\left(-\frac{q^2}{q^2}\right) - R\Phi$$

Exponential dampling!

 $a/q_{\rm Silk} \approx (\sigma_{T} \bar{n}_e H)^{-1/2}$ "diffusion length" = length traveled by photon's random walks

Additional Damping

- The power spectrum is $\left[\frac{\delta \rho_{\gamma}}{4\bar{\rho}_{\gamma}} + \Phi\right]^2$ with q -> l/r_L. The damping factor is thus exp(-2q²/q_{silk}²)
- $q_{silk}(t_L) = 0.139 \text{ Mpc}^{-1}$. This corresponds to a multipole of $I_{silk} \sim q_{silk}$ $r_L/\sqrt{2} = 1370$. Seems too large, compared to the exact calculation
- There is an additional damping due to a finite width of the last scattering surface, σ~250 K
 - "Fuzziness damping" Bond (1996)
 - "Landau damping" Weinberg (2001)

$$q_{\text{Landau}}^{-2} = \frac{3\sigma^2 t_L^2}{8a_0^2 T_0^2 (1+R_L)} \approx \left(0.20 \text{ Mpc}^{-1}\right)^{-2}$$

Recap

- The basic structure of the temperature power spectrum is
 - The Sachs-Wolfe "plateau" at low multipoles
 - Sound waves at intermediate multipoles
 - 1st-order tight-coupling
 - Silk damping and Landau damping at high multipoles
 - 2nd-order tight-coupling

