
Lecture 2
- Temperature anisotropy from sound waves



Planck 29-mo Power Spectrum
Planck Collaboration  (2016)





Cosmic Miso Soup
• When matter and radiation were hotter than 3000 K, 

matter was completely ionised. The Universe was 
filled with plasma, which behaves just like a soup 

• Think about a Miso soup (if you know what it is). 
Imagine throwing Tofus into a Miso soup, while 
changing the density of Miso  

• And imagine watching how ripples are created and 
propagate throughout the soup





This is a viscous fluid, 
in which the amplitude of 

sound waves damps 
at shorter wavelength





When do sound waves  
become important?

• In other words, when would the Sachs-Wolfe approximation 
(purely gravitational effects) become invalid?


• The key to the answer: Sound-crossing Time 

• Sound waves cannot alter temperature anisotropy at a 
given angular scale if there was not enough time for sound 
waves to propagate to the corresponding distance at the 
last-scattering surface


• The distance traveled by sound waves within a given 
time = The Sound Horizon



Comoving Photon Horizon

• First, the comoving distance traveled by photons is given 
by setting the space-time distance to be null:

ds2 = �c2dt2 + a2(t)dr2 = 0

rphoton = c

Z t

0

dt0

a(t0)



Comoving Sound Horizon

• Then, we replace the speed of light with a time-
dependent speed of sound:

rs =

Z t

0

dt0

a(t0)
cs(t

0)

• We cannot ignore the effects of sound waves if qrs > 1



Sound Speed
• Sound speed of an adiabatic fluid is given by

- δP: pressure perturbation 
- δρ: density perturbation

• For a baryon-photon system:

We can ignore the baryon pressure because  
it is much smaller than the photon pressure



Sound Speed
• Using the adiabatic relationship between photons and baryons:

• and pressure-density relation of a relativistic fluid, δPγ=δργ/3, 
We obtain

[i.e., the ratio of the number densities of baryons and photons is equal everywhere] 

• Or equivalently 
where

sound speed is reduced!



Value of R?
• The baryon mass density goes like a–3, whereas the 

photon energy density goes like a–4. Thus, the ratio of the 
two, R, goes like a.


• The proportionality constant is:

where we used 

for
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For the last-scattering redshift of zL=1090  
(or last-scattering temperature of TL=2974 K),  

rs = 145.3 Mpc 
We cannot ignore the effects of sound waves 

if qrs>1. Since l~qrL, this means 

l > rL/rs = 96 
where we used rL=13.95 Gpc



Creation of Sound Waves: 
Basic Equations

1. Conservation equations (energy and momentum)


2. Equation of state, relating pressure to energy density


3. General relativistic version of the “Poisson equation”, 
relating gravitational potential to energy density


4. Evolution of the “anisotropic stress” (viscosity)

P = P (⇢)



• Total energy conservation: 

• C.f., Total energy conservation [unperturbed]

Energy Conservation

( )
velocity potential

anisotropic stress:
[or, viscosity]

v↵ =
1

a
r�u↵



Energy Conservation
• Total energy conservation: 

• Again, this is the effect of locally-defined inhomogeneous 
scale factor, i.e.,


• The spatial metric is given by


• Thus, locally we can define a new scale factor: 

ds2 = a2(t) exp(�2 )dx2

ã(t,x) = a(t) exp(� )



Energy Conservation
• Total energy conservation: 

• Momentum flux going outward (inward) -> reduction 
(increase) in the energy density

C.f., for a non-expanding medium: 

⇢̇+r · (⇢v) = 0( )



Momentum Conservation
• Total momentum conservation

• Cosmological redshift of the momentum 

• Gravitational force given by potential gradient 

• Force given by pressure gradient 

• Force given by gradient of anisotropic stress 



• Pressure of non-relativistic species (i.e., baryons and cold 
dark matter) can be ignored relative to the energy density. 
Thus, we set them to zero: PB=0=PD and δPB=0=δPD


• Unperturbed pressure of relativistic species (i.e., photons 
and relativistic neutrinos) is given by the third of the 
energy density, i.e., Pγ=ργ/3 and Pν=ρν/3 

• Perturbed pressure involves contributions from the bulk 
viscosity: 

Equation of State

�P� =

�P⌫ =
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The reason for this is that 
trace of the stress-energy 

of relativistic species 
vanishes: ∑μ=0,1,2,3 Τμμ = 0 

T 0
0 +

3X

i=1

T i
i = �⇢+ 3P +r2⇡ = 0



Two Remarks

• In the standard scenario:


• Energy densities are conserved separately; thus we do 
not need to sum over all species


• Momentum densities of photons and baryons are NOT 
conserved separately but they are coupled via 
Thomson scattering. This must be taken into account 
when writing down separate conservation equations



• Fourier transformation replaces 

Conservation Equations for 
Photons and Baryons

r2 ! �q2

momentum transfer via scattering



• Fourier transformation replaces 

Conservation Equations for 
Photons and Baryons

r2 ! �q2

what about  
photon’s viscosity?



Formation of  
a Photon-baryon Fluid

•Photons are not a fluid. Photons free-stream at 
the speed of light


• The conservation equations are not enough because we 
need to specify the evolution of viscosity


• Solving for viscosity requires information of the phase-space 
distribution function of photons: Boltzmann equation


• However, frequent scattering of photons with baryons* can 
make photons behave as a fluid: Photon-baryon fluid 

Peebles & Yu (1970); Sunyaev & Zeldovich (1970)

*Photons scatter with electrons via Thomson scattering. Protons scatter with electrons 
via Coulomb scattering. Thus we can say, effectively, photons scatter with baryons



• Fourier transformation replaces 

Let’s solve them!
r2 ! �q2



Tight-coupling 
Approximation

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d is an arbitrary dimensionless variable]

• And take                             *. We obtain

*In this limit, viscosity πγ is exponentially suppressed. This result comes from 
the Boltzmann equation but we do not derive it here. It makes sense physically.



Tight-coupling 
Approximation

• Eliminating d and using the fact that R is proportional to 
the scale factor, we obtain

• Using the energy conservation to replace δuγ with δργ/ργ, 
we obtain

Wave Equation, with the speed of sound of cs2 = 1/3(1+R)!



Sound Wave!
• To simplify the equation, let’s first look at the high-

frequency solution


• Specifically, we take q >> aH (the wavelength of 
fluctuations is much shorter than the Hubble length). 
Then we can ignore time derivatives of R and Ψ 
because they evolve in the Hubble time scale:

Peebles & Yu (1970); Sunyaev & Zeldovich (1970)

Solution: SOUND WAVE!



Recap
• Photons are not a fluid; but Thomson scattering couples 

photons to baryons, forming a photon-baryon fluid 

• The reduced sound speed, cs2=1/3(1+R), emerges 
automatically


• δργ/4ργ is the temperature anisotropy at the bottom of the 
potential well. Adding gravitational redshift, the observed 
temperature anisotropy is δργ/4ργ + Φ, 
which is given by 







Stone: Fluctuations 
“entering the horizon”

• This is a tricky concept, but it is important


• Suppose that there are fluctuations at all wavelengths, 
including the ones that exceed the Hubble length (which we 
loosely call our “horizon”)


• Let’s not ask the origin of these “super-horizon 
fluctuations”, but just assume their existence


• As the Universe expands, our horizon grows and we can see 
longer and longer wavelengths


• Fluctuations “entering the horizon”



10 Gpc/h today

1 Gpc/h today

100 Mpc/h today

10 Mpc/h today

1 Mpc/h today

“enter the horizon”

Radiation Era

Last scattering

Matter Era



Three Regimes
• Super-horizon scales [q < aH] 

• Only gravity is important


• Evolution differs from Newtonian


• Sub-horizon but super-sound-horizon [aH < q < aH/cs] 

• Only gravity is important


• Evolution similar to Newtonian


• Sub-sound-horizon scales [q > aH/cs] 

• Hydrodynamics important -> Sound waves



qEQ

• Which fluctuation entered the horizon before the matter-
radiation equality?


• qEQ = aEQHEQ ~ 0.01 (ΩMh2/0.14) Mpc–1


• At the last scattering surface, this subtends the multipole 
of lEQ = qEQrL ~ 140



Entered the horizon  
during the radiation era



What determines the 
locations and heights of 

the peaks?  

Does the sound-wave 
solution explain it?



Peak Locations?

• VERY roughly speaking, the angular power spectrum Cl is given 
by [             ]2 with q -> l/rL


• Question: What are the integration constants, A and B?


• Answer: They depend on the initial conditions; namely, 
adiabatic or not? 


• For adiabatic initial condition, A >> B when q is large

High-frequency solution, for q >> aH

[We will show it later.]



Peak Locations?

• VERY roughly speaking, the angular power spectrum Cl is given 
by [             ]2 with q -> l/rL


• If A>>B, the locations of peaks are

High-frequency solution, for q >> aH





The simple estimates do 
not match! 

This is simply because 
these angular scales do 

not satisfy q >> aH, i.e, the 
oscillations are not pure 

cosine even for the 
adiabatic initial condition. 

We need a better solution!



Better Solution in 
Radiation-dominated Era

• In the radiation-dominated era, R << 1


• Change the independent variable from the time (t) to 

Going back to the original tight-coupling equation..



Better Solution in 
Radiation-dominated Era

• In the radiation-dominated era, R << 1


• Change the independent variable from the time (t) to 

Then the equation simplifies to

where 
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The solution is



Better Solution in 
Radiation-dominated Era

Then the equation simplifies to

where 

The solution is

where 



Einstein’s Equations

• Now we need to know Newton’s gravitational potential, φ, 
and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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Einstein’s Equations 
in Radiation-dominated Era
• Now we need to know Newton’s gravitational potential, φ, 

and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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Einstein’s Equations 
in Radiation-dominated Era
• Now we need to know Newton’s gravitational potential, φ, 

and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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We shall ignore this



Solution (Adiabatic) 
in Radiation-dominated Era

• Low-frequency limit (super-sound-horizon scales, qrs << 1)


• ΦADI -> –2ζ/3 = constant


• High-frequency limit (sub-sound-horizon scales, qrs >> 1)


• ΦADI -> 2ζ

ADI
where

damp

Kodama & Sasaki (1986, 1987)
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Poisson Equation

& oscillation solution for radiation



Solution (Adiabatic) 
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• Low-frequency limit (super-sound-horizon scales, qrs << 1)


• ΦADI -> –2ζ/3 = constant


• High-frequency limit (sub-sound-horizon scales, qrs >> 1)
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ADI
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ζ:  
Conserved on large scales

• For the adiabatic initial condition, there exists a useful quantity, 
ζ, which remains constant on large scales 
(super-horizon scales, q << aH) regardless of the contents of 
the Universe


• ζ is conserved regardless of whether the Universe is 
radiation-dominated, matter-dominated, or whatever


• Energy conservation for q << aH:

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



ζ:  
Conserved on large scales

• If pressure is a function of the energy density only, i.e.,

Integrate

, then

integration constant

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



ζ:  
Conserved on large scales

• If pressure is a function of the energy density only, i.e.,
, then

integration constant

For the adiabatic initial 
condition, all species share the 

same value of ζα, i.e., ζα=ζ

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



Sound Wave Solution in the 
Radiation-dominated Era

The solution is

where 

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)



Sound Wave Solution in the 
Radiation-dominated Era

The solution is

where 

i.e., ADI ADI

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)



Sound Wave Solution in the 
Radiation-dominated Era

The adiabatic solution is

with

Therefore, the solution is a pure cosine 
only in the high-frequency limit! 

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)





Roles of viscosity

• Neutrino viscosity 

• Modify potentials: 


• Photon viscosity 

• Viscous photon-baryon fluid: damping of sound waves
Silk (1968) “Silk damping”



High-frequency solution 
without neutrino viscosity

The solution is

where 



High-frequency solution 
with neutrino viscosity

The solution is

where 

Chluba & Grin (2013)

non-zero value!



High-frequency solution 
with neutrino viscosity

The solution is

where 

Hu & Sugiyama (1996)

Bashinsky & Seljak (2004)

Phase shift!



High-frequency solution 
with neutrino viscosity

The solution is

where 

Hu & Sugiyama (1996)

Bashinsky & Seljak (2004)

Phase shift!

Thus, the neutrino viscosity will: 

(1)  Reduce the amplitude 
of sound waves at large multipoles 

(2)  Shift the peak positions 
of the temperature power spectrum 



Photon Viscosity

• In the tight-coupling approximation, the photon viscosity 
damps exponentially


• To take into account a non-zero photon viscosity, we go 
to a higher order in the tight-coupling approximation



Tight-coupling 
Approximation (1st-order)

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d is an arbitrary dimensionless variable]

• And take                             *. We obtain

*In this limit, viscosity πγ is exponentially suppressed. This result comes from 
the Boltzmann equation but we do not derive it here. It makes sense physically.



Tight-coupling 
Approximation (2nd-order)

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d2 is an arbitrary dimensionless variables]

• And take                            .. We obtain

where



Tight-coupling 
Approximation (2nd-order)

• Eliminating d2 and using the fact that R is proportional to 
the scale factor, we obtain

• Getting πγ requires an approximate solution of the Boltzmann 
equation in the 2nd-order tight coupling. We do not derive it 
here. The answer is

Kaiser (1983)



Tight-coupling 
Approximation (2nd-order)

• Eliminating d2 and using the fact that R is proportional to 
the scale factor, we obtain

• Getting πγ requires an approximate solution of the Boltzmann 
equation in the 2nd-order tight coupling. We do not derive it 
here. The answer is

Kaiser (1983)

given by the velocity potential 
- a well-known result in fluid 

dynamics



Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

where
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where Important for high frequencies  
(large multipoles)



Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

Exponential dampling!

SOLUTION:



Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

Exponential dampling!

SOLUTION:

Silk

Silk
“diffusion length”  
= length traveled by photon’s random walks



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Silk Damping?



Additional Damping

Landau ( )

• The power spectrum is [            ]2 with q -> l/rL. The damping factor 
is thus exp(–2q2/qsilk2)


• qsilk(tL) = 0.139 Mpc–1. This corresponds to a multipole of  lsilk ~ qsilk 
rL/√2 = 1370. Seems too large, compared to the exact calculation


• There is an additional damping due to a finite width of the last 
scattering surface, σ~250 K


• “Fuzziness damping” – Bond (1996)


• “Landau damping” - Weinberg (2001)



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Silk+Landau  
Damping

Total damping:  
qD–2 = qsilk–2 + qlandau–2 


qD ~ 0.11 Mpc–1, giving

lD ~ qDrL/√2 ~ 1125



Recap
• The basic structure of the temperature power spectrum is


• The Sachs-Wolfe “plateau” at low multipoles


• Sound waves at intermediate multipoles


• 1st-order tight-coupling 


• Silk damping and Landau damping at high multipoles


• 2nd-order tight-coupling



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Tomorrow: Let’s 
understand the 
peak heights

Silk+Landau  
Damping


