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Finding Inflation: Breakthroughs 
in 2012 and 2013

• Discovery of broken scale invariance, ns<1, with more than 5σ 

• WMAP+ACT+SPT+BAO [December 2012] 

• WMAP+Planck [March 2013] 

• Remarkable degree of Gaussianity of primordial fluctuations 

• Non-Gaussianity limited to <0.2% by WMAP and <0.04% by 
Planck [for the local form] 

• These are important milestones: strong evidence for the 
quantum origin of structures in the universe



WMAP(temp+pol)+ACT+SPT+BAO+H0
WMAP(pol) + Planck + BAO 

Courtesy of David Larson

A power-law scalar initial  
power spectrum is assumed



March 17, 2014
BICEP2’s announcement



Breakthrough* in 2014
• Discovery of the primordial* B-modes with more 

than 5σ by BICEP2 

• Detection of nearly scale-invariant tensor 
perturbations proves inflation 

• This requires precise characterisation of the B-
mode power spectrum. How are we going to 
achieve this?

*yet to be confirmed



Let’s try to understand what is shown in this plot,  
assuming that it is due to gravitational waves

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



Physics of CMB Polarisation

• Necessary and sufficient conditions for generating 
polarisation in CMB: 

• Thomson scattering 

• Quadrupolar temperature anisotropy around an electron

By Wayne Hu



Origin of Quadrupole

• Scalar perturbations: motion of electrons 
with respect to photons 

• Tensor perturbations: gravitational waves



Key Predictions of Inflation
• Fluctuations we observe today in CMB and 

the matter distribution originate from quantum 
fluctuations generated during inflation 

!

!

• There should also be ultra-long-wavelength 
gravitational waves generated during inflation
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We measure distortions  
in space

• A distance between two points in space 

!

• ζ: “curvature perturbation” (scalar mode) 

• Perturbation to the determinant of the spatial metric 

• hij: “gravitational waves” (tensor mode) 

• Perturbation that does not change the determinant (area)
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Tensor-to-scalar Ratio

• The BICEP2 results suggest r~0.2, if we do not 
subtract any foregrounds

r ⌘ hhijhiji
h⇣2i



Quantum fluctuations and 
gravitational waves

• Quantum fluctuations generated during inflation are 
proportional to the Hubble expansion rate during 
inflation, H 

• Simply a consequence of Uncertainty Principle 

• Variance of gravitational waves is then proportional 
to H2:

hhijh
iji / H2



Energy Scale of Inflation

• Then, the Friedmann equation relates H2 to the energy 
density (or potential) of a scalar field driving inflation:

hhijh
iji / H2

H2 =
V (�)

3M2
pl

• The BICEP2 result, r~0.2, implies

V 1/4 = 2⇥ 1016
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Has Inflation Occurred?
• We must see [near] scale invariance of the 

gravitational wave power spectrum:

hhij(k)h
ij,⇤(k)i / knt

with

nt = O(10�2)



Inflation, defined
• Necessary and sufficient condition for inflation = sustained 

accelerated expansion in the early universe 

• Expansion rate: H=(da/dt)/a 

• Accelerated expansion: (d2a/dt2)/a = dH/dt + H2 > 0 

• Thus, –(dH/dt)/H2 < 1!

• In other words:  

• The rate of change of H must be slow [nt ~ 0] 

• [and H usually decreases slowly, giving nt < 0]



Gravitational waves are 
coming toward you!

• What do they do to the distance between particles?



Two GW modes

• Anisotropic stretching of space generates 
quadrupole temperature anisotropy. How?



GW to temperature 
anisotropy

electrons



GW to temperature 
anisotropy
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• Stretching of space -> temperature drops 

• Contraction of space -> temperature rises



Then to polarisation!
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• Polarisation directions are parallel to hot 
regions



propagation direction of GW

h+=cos(kx)

Polarisation directions perpendicular/parallel to the 
wavenumber vector -> E mode polarisation



propagation direction of GW

hx=cos(kx)

Polarisation directions 45 degrees tilted from to the 
wavenumber vector -> B mode polarisation



Important note:
• Definition of h+ and hx depends on coordinates, but 

definition of E- and B-mode polarisation does not 
depend on coordinates 

• Therefore, h+ does not always give E; hx does not 
always give B 

• The important point is that h+ and hx always 
coexist. When a linear combination of h+ and hx 
produces E, another combination produces B



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

BICEP2 Collaboration



CAUTION: we are NOT seeing a single plane wave 
propagating perpendicular to our line of sight

Signature of gravitational 
waves in the sky [?]

if you wish, you could associate !
one pattern with one plane wave… !

BUT



The E-mode polarisation is totally dominated !
by the scalar-mode fluctuations [density waves]

There are E modes in the 
sky as well

BICEP2 CollaborationBICEP2 Collaboration



Is the signal cosmological?

• Worries: 

• Is it from Galactic foreground emission, 
e.g., dust? 

• Is it from imperfections in the 
experiment, e.g., detector mismatches?







Analysis: Two-point 
Correlation Function
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x: 150GHz x 100GHz [BICEP1]
*: 150GHz x 150GHz [BICEP1]

No 100 GHz x 100 GHz [yet]

BICEP2 Collaboration



Can we rule out synchrotron or dust?

• The answer is No

BICEP2 Collaboration



September 22, 2014
Planck’s Intermediate Paper on Dust



• Values of the “tensor-to-scalar ratio” equivalent to 
the B-mode power spectrum seen at various 
locations in the sky

Area observed !
by BICEP2

Planck Collaboration



• Planck measured the B-mode power spectrum at 353 
GHz well 

• Extrapolating it down to 150 GHz appears to explain all of 
the signal seen by BICEP2…

Planck Collaboration



Previous Situation  
[before Monday]

• No strong evidence that the detected signal is not 
cosmological 

• No strong evidence that the detected signal is 
cosmological, either



Current Situation 

• Planck shows the evidence that the detected signal 
is not cosmological, but is due to dust 

• No strong evidence that the detected signal is 
cosmological



So, the search continues!

• We wish to “prove inflation” by characterising the 
B-mode power spectrum precisely. Specifically: 

• We will find the existence of the predicted 
“reionisation bump” at l<10 

• We will determine the tensor tilt, nt, to the 
precision of a few x 10–2 

• [The exact scale invariance is nt=0]



Tensor Tilt, nt
• Unlike the scalar tilt, it is not easy to determine the 

tensor tilt because the lensing B-mode power 
spectrum reduces the number of usable modes for 
measuring the primordial B-mode power spectrum 

• In the best case scenario without de-lensing, the 
uncertainty on nt is Err[nt]~0.03 for r=0.1, which is 
too large to test the single-field consistency relation, 
nt = –r/8 ~ –0.01(r/0.1) 

• De-lensing is crucial!



Lensing limits our ability to 
determine the tensor tilt

If noise is <5uK arcmin, !
lowering noise further !

does not help



Without de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



90% de-lensing [r=0.1]
Most optimistic forecast [full sky, white noise, no foreground]



90% de-lensing [r=0.01]
Most optimistic forecast [full sky, white noise, no foreground]



Why reionisation bump?

• Measuring the reionisation bump at l<10 would not 
improve the precision of the tensor tilt very much 

• However, it is an important qualitative test of the 
prediction of inflation 

• The measurement of the reionisation bump is a 
challenging task due to Galactic foreground



• At 100 GHz, the total foreground emission is a couple of 
orders of magnitude bigger in power at l<10

Planck Sky Model v1.6.2



How many components?

• CMB: Tν ~ ν0 

• Synchrotron: Tν ~ ν–3 

• Dust: Tν ~ ν2 

• Therefore, we need at least 3 frequencies to 
separate them



Gauss will help us
• The power spectrum captures only a fraction of 

information 

• CMB is very close to Gaussian, while foreground is 
highly non-Gaussian 

• CMB scientist’s best friend is this equation:

�2 lnL = ([data]i � [stu↵]i)
t(C�1)ij([data]j � [stu↵]j)

2-point function of  
CMB plus noise



WMAP’s Simple Approach

• Use the 23 GHz map as a tracer of synchrotron 

• Fit the 23 GHz map to a map at another frequency with a single 
amplitude αS, and subtract 

• After correcting for the “CMB bias”, this method removes 
synchrotron completely, provided that: 

• Spectral index [Tν~νβ; β~–0.3 for synchrotron] does not vary 
across the sky 

• Residual foreground emission increases as the index variation 
increases



Limitation of the Simplest 
Approach

• Synchrotron index does vary a lot across the sky
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Going with the simplest
• While the synchrotron and dust indices do vary 

across the sky, let us go ahead with the simplest 
approach 

• Obvious improvements are possible: 

• Fit multiple coefficients to different locations in 
the sky 

• Use more frequencies to constrain indices 
simultaneously 



Methodology



O(N3)

• Since we cannot invert the covariance matrix when 
the number of pixels is too large, we focus on low-
resolution Q and U maps with 3072 pixels per map 
[Nside=16; 3.7-degree pixel]



We target the reionisation bump



Two Masks and Choice of 
Regions for Synch. Index

Method I Method II



Results
• It works well! 

• Method I: the bias is 
δr=2x10–3 

• Method II: the bias is 
δr=0.6x10–3 

• [This analysis needs to 
be re-done with the dust 
spectral index from 
Planck]

Katayama & Komatsu, ApJ, 737, 78 (2011)
[3 frequency bands: 60, 100, 240 GHz]



Toward precision 
measurement of B-modes

• r~10–3 seems totally possible, even in the presence 
of synchrotron and dust emissions 

• What experiment can we design to achieve this 
measurement?



LiteBIRD
• Next-generation polarisation-sensitive microwave 

experiment. Target launch date: early 2020 

• Led by Prof. Masashi Hazumi (KEK); a 
collaboration of ~70 scientists in Japan, USA, 
Canada, and Germany 

• Singular goal: measurement of the primordial B-
mode power spectrum with Err[r]=0.001!

• 6 frequency bands between 50 and 320 GHz



LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and 
Inflation from Cosmic Background Radiation Detection

■ 100mK focal plane w/ multi-chroic 
superconducting detector array 

■ 6 bands b/w 50 and 320 GHz

■  Candidate for JAXA’s future missions on “fundamental physics”  
■  Goal: Search for primordial gravitational waves to the lower bound of well-motivated 

inflationary models 
■  Full success: δr < 0.001 (δr is the total uncertainties on tensor-to-scalar ratio, which 

is a fundamental cosmology parameter related to the power of primordial 
gravitational waves)

■Continuously-rotating HWP 
w/ 30 cm diameter 

■ 60 cm primary mirror w/ 
Cross-Dragone 
configuration (4K)

JT/ST + ADR w/ 
heritages of X-ray missions

Major specifications

■Orbit: L2 (Twilight LEO ~600km as an option) 
■Weight: ~1300kg 
■ Power: ~2000W 
■Observing time: > 2 years 
■ Spin rate: ~0.1rpm
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LiteBIRD focal plane design
UC Berkeley  
TES  option

tri-chroic（140/195/280GHz）

tri-chroic（60/78/100GHz）

Tbath = 100mK

Stre
hl ra

tio>0.8

POLARBEAR 
focal plane as 
proof of principle

2022 TES 
bolometers

Band centers can  
be distributed to  
increase the  
effective number  
of bands

More space to place <60GHz detectors

2µKarcmin 
(w/ 2 effective years)



LiteBIRD proposal milestones
• 2012 October - 2014 March  

Feasibility studies & cost estimation with MELCO and NEC 
!

• 2014 March  
Recommendation from Science Council of Japan as one of the 
top 27 projects 
!

• 2014 July 
Ranked highly in the “Roadmap 2014” of MEXT [Ministry of 
Education, Culture, Sports, Science & Technology of Japan] 

!
• late 2014  

White Paper (will be published in Progress of Theoretical and 
Experimental Physics (PTEP) 

!
• 2014 June - December  

Proposal and Mission Definition Review (MDR)  
!

• 2015 ~  
Phase A 



ESA’s M4 Call is Out 
[Target Launch in 2025]

• We are working on the COrE+ mission proposal 

• COrE = Cosmic Origins Explorer 

• Original version not selected by M3 

• The letter of intent has been sent, and the proposal is due 
mid January 2015 

• The effort led by Paolo de Bernardis, Jacques 
Delabrouille, and Francois Bouchet 

• German team [at the moment]: MPA, MPIfR, LMU, Aachen



COrE+: a sketch
• The previous definition of COrE+ is still being worked 

out. Heavily affected by BICEP2/Planck results, and a 
rather tight budget (450M Euro by ESA and perhaps 
100M Euro by the European consortium) and weight limit 
(payload 800 kg) 

• Still want 10x more sensitivity than Planck with more 
frequency coverage, while maintaining comparable 
angular resolution 

• which means 5 times better angular resolution and 
many more frequencies than LiteBIRD  

• A near ultimate mission



Conclusion
• Important milestones for inflation have been achieved: 

ns<1 with 5σ; remarkable Gaussianity 

• The next goal: unambiguous measurement of the 
primordial B-mode polarisation power spectrum 

• Err[nt]~0.01 possible only with substantial de-lensing 

• Foreground cleaning with the simplest internal template 
method is promising, limiting the bias in r to <10–3 

• LiteBIRD proposal: a B-mode CMB polarisation satellite in 
early 2020 

• COrE+ proposal: a near ultime CMB polarisation satellite? 
M4 call - a target launch in 2025


