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Topics
• In this lecture, we will cover 

• Cosmic microwave background 

• Galaxy redshift surveys 

• Galaxy clusters 

• as “dark energy probes.” However, we do not have 
time to cover 

• Type Ia supernovae 

• Weak gravitational lensing



• Simple routines for computing various cosmological 
quantities [many of which are shown in this lecture] 
are available at 

• Cosmology Routine Library (CRL):  

• http://www.mpa-garching.mpg.de/~komatsu/crl/

http://www.mpa-garching.mpg.de/~komatsu/crl/


Defining “Dark Energy”
• It is often said that there are two approaches to 

explain the observed acceleration of the universe. 

• One is “dark energy,” and 

• The other is a “modification to General Relativity.” 

• However, there is no clear distinction between 
them, unless we impose some constraints on what 
we mean by “dark energy.”



DE vs MG: Example #1
• Consider an action given by [with 8πG=1]

• Perform a conformal transformation 
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DE vs MG: Example #1
• The action becomes

• with a potential 

• Therefore, a modified GR model with R2 is equivalent to 
a model with a dark energy field, φ, coupled to matter!

• This is generic to models with
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DE vs MG: Example #2
• Consider an action given by [with 8πG=1]

• And a FLRW metric with scalar perturbations 

• Then the relation between Φ and Ψ is given by
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DE vs MG: Example #2
• Consider an action given by [with 8πG=1]

• And anisotropic stress of dark energy 

• Then the relation between Φ and Ψ is given by

• DE anisotropic stress can mimic f(R) gravity
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Defining “Dark Energy”
• Therefore, we shall use the following terminology: 

• By “dark energy”, we mean a fluid which 

• has an equation of state of Pde < –ρde/3, 

• does not couple to matter, and 

• does not have anisotropic stress 

• This “dark energy” fluid can be distinguished from 
modifications to General Relativity



Goals of Dark Energy 
Research

• We wish to determine the nature of dark energy. But, 
where should we start? 

• A breakthrough in science is often made when the 
standard model is ruled out. 

• “Standard model” in cosmology is the ΛCDM model. 
We wish to rule out dark energy being Λ, a 
cosmological constant 

• The most important goal of dark energy research is to 
find that the dark energy density, ρde, depends on time



Measuring Dark Energy
• We can measure the dark energy density only via 

its effect on the expansion of the universe. Namely, 
we wish to measure the Hubble expansion rate, 
H(z), as a function of redshifts
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• Energy conservation gives [with w(z)=Pde(z)/ρde(z)]
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Growth of Perturbation
• The expansion of the universe also determines how fast 

perturbations grow. An intuitive argument is as follows. 

• The growth time scale of matter perturbations [free-fall 
time, tff] is given by
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= �4⇡G⇢matter

3
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• The matter perturbation growth is determined by 
competition between the free-fall time and the 
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Growth of Perturbation
• The matter perturbation cannot grow during the 

dark-energy-dominated era, ρde >> ρmatter, because 
the expansion is too fast
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• Therefore, measuring the [suppression of] 
growth rate of matter perturbations can also be 
used to measure the effect of dark energy on the 
expansion rate of the universe



Growth Equation
• Writing the redshift dependence of matter density 

perturbations as 
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*Strictly speaking, this formula is valid when the contribution of DE 
fluctuations to the gravitational potential is negligible compared to matter



• The growth is normalised to unity at 
high redshift, g(z) -> 1 for z >> 1 

• w>–1: For a given Ωde today, DE 
becomes dominant earlier for w>–1, 
giving earlier/more suppression in 
the growth of matter perturbations
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Cosmic Microwave 
Background



DE vs CMB
• Temperature anisotropy of the cosmic microwave 

background provides information on dark energy by 

• Providing the amplitude of fluctuations at z=1090 

• Providing the angular diameter distance to 
z=1090 

• Integrated Sachs-Wolfe (ISW) effect



Growth: Application #1
• Use the CMB data to fix 

the amplitude of 
fluctuations at z=1090 

• Varying w then gives 
various values of the 
present-day matter 
fluctuation amplitude, σ8 

• Data on σ8 [i.e., large-
scale structure data at 
lower redshifts] can then 
determine the value of w

WMAP5

[present]



Growth: Application #2
• Integrated Sachs-Wolfe effect [Sachs&Wolfe 1967]!

• As CMB photons travel from z=1090 to the 
present epoch, their energies change due to time-
dependent gravitational potentials
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Growth: Application #2
• Integrated Sachs-Wolfe effect

• The right hand side vanishes 
during the matter-dominated 
(MD) era, while Ψ and Φ decay 
during the DE-dominated era 

• ISW is a direct probe of dg/dt

�TISW

T
=

Z t0

t⇤

dt ( ̇� �̇)

= 2 (tMD)

Z t0

tMD

dt ġ



• The growth derivative vanishes at 
high redshifts where the universe is 
dominated by matter 

• w>–1: For a given Ωde today, DE 
becomes dominant earlier for w>–1, 
giving earlier suppression in the 
growth of matter perturbations
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⌦b = 0.05

⌦cdm = 0.25

⌦de = 0.7

H0 = 70 km/s/Mpc

• The peak positions are given by l=k*dA, where dA 
is the angular diameter distance to z=1090. w>–1 
shifts the peaks to the left because dA is smaller
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• ISW is a powerful method to detect dark 
energy due to potential decays, especially in 
cross-correlations with galaxies 

• Unfortunately, changes in ISW due to w is 
too small to detect in the CMB power 
spectrum, or in cross-correlations



Galaxy Redshift Survey



DE vs Galaxy Survey

• Galaxy redshift surveys provide information on dark 
energy by 

• Measuring dA(z) and H(z) from the standard ruler 
and Alcock-Paczynski methods 

• Measuring the linear growth of matter 
perturbations from the redshift space distortion



Measuring H(z)
• Standard ruler method applied to correlation 

functions of galaxies!

• Use known, well-calibrated, specific features in 
N-point correlation functions [usually N=2] of 
matter in angular and redshift directions 

• Mapping the observed separations of galaxies to 
the comoving separations:

�z = H(z)�rk
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dA(z)

[Line-of-sight direction]

[Angular directions] dA =

Z z

0

dz0

H(z0)
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SDSS-III/BOSS 
Sanchez et al.  (2014)

Wow!!

Volume = 10 Gpc3 
# of galaxies = 690K
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?

There are 2 angular 
and 1 LOS directions. 
!
Averaging all three 
directions yields a 
constraint on dA2/H!
!
Not averaging 
angular and LOS 
directions breaks 
degeneracy and 
yields dA and H 
separately; but how?

Alcock-Paczynski !
Test



Alcock-Paczynski [AP] Test

• The key idea: homogeneity and isotropy of the 
universe demands that the two-point correlation be 
isotropic in all three directions 

• (in the absence of redshift space distortion [RSD] 
- we shall come back to this shortly; but let us 
ignore RSD here for simplicity)

Alcock&Paczynski (1979)



How the AP test works
• We convert the observed angular and redshift 

separations into the comoving separations, 
assuming dA(z) and H(z).
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How the AP test works
• We convert the observed angular and redshift 

separations into the comoving separations, 
assuming dA(z) and H(z).
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dAH from the AP test
• We tune dA and H until the correlation function in 

comoving coordinates becomes isotropic [modulo 
RSD].  

• However, the AP test cannot give dA and H 
separately; it can only give dAH. 

• Combining the AP test with the standard ruler 
method giving dA2/H gives tight constraints on dA 
and H separately! [Shoji, Jeong & Komatsu 2009]



There are 2 angular 
and 1 LOS directions. 
!
Averaging all three 
directions yields a 
constraint on dA2/H!
!
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There are 2 angular 
and 1 LOS directions. 
!
Averaging all three 
directions yields a 
constraint on dA2/H!
!
AP test gives dAH

SDSS-III/BOSS 
Sanchez et al.  (2014)

d
AH = constant



There are 2 angular 
and 1 LOS directions. 
!
Averaging all three 
directions yields a 
constraint on dA2/H!
!
AP test gives dAH

dA & H determined !
separately!

SDSS-III/BOSS 
Sanchez et al.  (2014)

Limits on DE



dA(z=1090) only

+dA2/H!
from BOSS

+AP test!
from BOSS!

SDSS-III/BOSS 
Sanchez et al.  (2014)

For a long time, we 
had to use Type Ia 
supernova data to put 
a competitive limit on 
the equation of state 
of DE, wDE. 
!
With the AP test, we 
can finally constrain 
wDE without using 
supernovae! 
!
-> Powerful check of 
systematics

wDE = �0.964± 0.077

(68% CL;WMAP9 +BOSS)



Redshift Space Distortion

• Large-scale flow of galaxies into an over-density 
region enhances clustering along the line of sight

Kaiser (1987)



SDSS-III/BOSS 
Samuthia et al. (2014)
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μ=cosθ!
>0.5

μ<0.5θ
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SDSS-III/BOSS 
Sanchez et al.  (2014)

[μ>0.5]

[μ<0.5]

Clear detection of RSD!



Kaiser Effect: Derivation
• Conservation of the number of galaxies

n̄(1 + �s)d
3s = n̄(1 + �r)d

3r
redshift space real space

�s =
1

|J | (1 + �r)� 1

• Jacobian matrix for real to redshift space trans. is

|J | = 1 +
1

aH

@vk

@x3



Kaiser Effect: Derivation
• Expanding to first order in perturbations

�s =
1

|J | (1 + �r)� 1

• To determine the 2nd term, use continuity equation
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• The linear growth rate gives 
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Kaiser Effect: Derivation
• Going to Fourier space

• Therefore

with �̇r = fH�r�̇r +
1

a
r · v = 0

vk,k = iafH
kk

k2
�r,k
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where μ=cosθ, and θ is the angle between k and the line of sight

The Kaiser effect gives quadrupole dependence on μ



Constraining Growth from 
the Kaiser Effect

• The Kaiser effect gives a specific angular 
dependence of the correlation function, with the 
coefficient given by f=1+dlng/dlna 

• It can be used to constrain dlng/dlna!

• However, the Kaiser formula is valid only in the 
linear regime. We must extend it to include non-
linear effects. This calculation has not been 
completed yet, and it is the most pressing issue 
in the large-scale structure community



Galaxy Bias
• Another complication is that galaxies are biased 

tracers of the underlying mass distribution. In the 
linear regime, δgalaxy=bδmatter ~ bσ8, in real space 

• In redshift space, schematically
�g(µ = 0) / b�8

�g(µ = 1) / (b+ f)�8

• Therefore, the Kaiser effect yields fσ8, rather than f 
itself, unless we know the value of the bias factor, b. 
[This information can be obtained from weak lensing 
data, if available]



SDSS-III/BOSS 
Samushia et al.  (2014)
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AP and RSD can be separated by  
the current data to some extent



AP & RSD: Summary
Shoji, Jeong & Komatsu (2009)
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AP & RSD: Summary
Shoji, Jeong & Komatsu (2009)

•Amplitude 
•Linear RSD 
are marginalised



AP & RSD: Summary
Shoji, Jeong & Komatsu (2009)

•Amplitude 
•Linear RSD 
•Non-linear RSD 
are marginalised



AP & RSD: Summary
Shoji, Jeong & Komatsu (2009)

•Amplitude 
•Linear RSD 
•Non-linear RSD 
•Primordial 
spectrum shape 

!
are marginalised



DE and Galaxy Survey
• In summary, galaxy surveys can constrain DE via: 

• dA2/H from the standard ruler method, 

• dAH from the AP test, and 

• f=1+dg/dlna from [linear] RSD 

• The first two constraints give the dark energy density, 
ρDE. Does it vary with time? 

• GR+dark energy relates dg/dlna with H. Does GR fit?



This may be possible  
in 10 years from now…

Euclid White Paper, arXiv:1206.1225



Galaxy Clusters



DE vs Galaxy Clusters

• Counting galaxy clusters provides information on 
dark energy by 

• Providing the comoving volume element which 
depends on dA(z) and H(z) 

• Providing the amplitude of matter fluctuations as 
a function of redshifts, σ8(z)



Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2009) 
http://wise-obs.tau.ac.il/~elinor/clusters

http://wise-obs.tau.ac.il/~elinor/clusters


Where is a galaxy cluster?

Subaru image of RXJ1347-1145 (Medezinski et al. 2009) 
http://wise-obs.tau.ac.il/~elinor/clusters

http://wise-obs.tau.ac.il/~elinor/clusters


Subaru image of RXJ1347-1145 (Medezinski et al. 2009) 
http://wise-obs.tau.ac.il/~elinor/clusters

http://wise-obs.tau.ac.il/~elinor/clusters


Hubble image of RXJ1347-1145 (Bradac et al. 2008)



Chandra X-ray image of RXJ1347-1145 !
(Johnson et al. 2012)



Chandra X-ray image of RXJ1347-1145 !
(Johnson et al. 2012)

Image of the Sunyaev-Zel’dovich effect at 150 GHz !
[Nobeyama Radio Observatory] (Komatsu et al. 2001)



Multi-wavelength Data

Optical:  
•102–3 galaxies 
•velocity dispersion 
•gravitational lensing

X-ray:  
•hot gas (107–8 K) 
•spectroscopic TX 
•Intensity ~ ne2L

IX =

Z
dl n2

e⇤(TX)

SZ [microwave]:  
•hot gas (107-8 K) 
•electron pressure 
•Intensity ~ neTeL

ISZ = g⌫
�T kB
mec2

Z
dl neTe



Galaxy Cluster Counts
• We count galaxy clusters over a certain region in 

the sky [with the solid angle Ωobs] 

• Our ability to detect clusters is limited by noise 
[limiting flux, Flim] 

• For a comoving number density of clusters per unit 
mass, dn/dM, the observed number count is 

N = ⌦
obs

Z 1

0

dz
d2V

dzd⌦

Z 1

Flim(z)
dF

dn

dM

dM

dF
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Redshift, z

’redshift_volume_1000_w1.txt’u 1:($2*1e-9)
’redshift_volume_1000_w09.txt’u 1:($2*1e-9)
’redshift_volume_1000_w11.txt’u 1:($2*1e-9)

⌦m = 0.3

⌦de = 0.7

V (< z) =

Z

1000 deg2

d⌦

Z z

0
dz0

d2V

dz0d⌦

w=–0.9

w=–1.1



Mass Function, dn/dM
• The comoving number density per unit mass range, 

dn/dM, is exponentially sensitive to the amplitude 
of matter fluctuations, σ8, for high-mass, rare objects 

• By “high-mass objects”, we mean “high peaks,” 
satisfying 1.68/σ(M) > 1
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Dark Matter Halo Mass [Msun/h]

’Mh_dndlnMh_z0_s807.txt’
’Mh_dndlnMh_z05_s807.txt’
’Mh_dndlnMh_z1_s807.txt’
’Mh_dndlnMh_z0_s808.txt’
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z=0
σ8=0.8

σ8=0.7z=0.5
σ8=0.8

σ8=0.7
z=1

σ8=0.8

σ8=0.7

• dn/dM falls off exponentially in the 
cluster-mass range [M>1014 Msun/h], 
and is very sensitive to the value of σ8 
and redshift 

• This can be understood by the 
exponential dependence on 1.68/σ(M,z)

⌦b = 0.05, ⌦cdm = 0.25

⌦de = 0.7, w = �1

H0 = 70 km/s/Mpc



Chandra Cosmology Project 
Vikhlinin et al. (2009)
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The Challenge

• Cluster masses are not directly 
observable!

• The observables “F” include 

• Number of cluster member 
galaxies [optical] 

• Velocity dispersion [optical] 

• Strong- and weak-lensing 
masses [optical]

N = ⌦
obs

Z 1

0

dz
d2V

dzd⌦

Z 1

Flim(z)
dF

dn

dM

dM

dF

Miss estimation of the masses !
from the observables severely !

compromises the statistical power 
of galaxy clusters as a DE probe

• X-ray intensity [X-ray] 

• X-ray spectroscopic 
temperature [X-ray] 

• SZ intensity [microwave]



HSE: the leading method
• Currently, most of the mass cluster estimations rely 

on the X-ray data and the assumption of hydrostatic 
equilibrium [HSE] 

• The measured X-ray intensity is proportional to 
∫ne2 dl, which can be converted into a radial 
profile of electron density, ne(r), assuming 
spherical symmetry 

• The spectroscopic data give a radial electron 
temperature profile, Te(r)

These measurements give an estimate of  
the electron pressure profile, Pe(r)=ne(r)kBTe(r)



HSE: the leading method

• Recently, more SZ measurements, which are 
proportional to ∫nekBTe dl, are used to directly obtain 
an estimate of the electron pressure profile



• In the usual HSE assumption, the total gas pressure 
[including contributions from ions and electrons] 
gradient balances against gravity 

• ngas = nion+ne = [(3+5X)/(2+2X)]ne = 1.93ne 

• Assuming Tion=Te [which is not always satisfied!] 

• Pgas(r) = 1.93Pe(r) 

• Then, HSE 

• gives an estimate of the total mass of a cluster, M

HSE: the leading method

1

⇢gas(r)

@Pgas(r)

@r
= �GM(< r)

r2

[X=0.75 is the hydrogen 
mass abundance]



Limitation of HSE
• The HSE equation 

• only includes thermal pressure; however, not all 
kinetic energy of in-falling gas is thermalized 

• There is evidence that there is significant non-
thermal pressure support coming from bulk 
motion of gas (e.g., turbulence) 

• Therefore, the correct equation to use would be

1

⇢gas(r)

@Pgas(r)

@r
= �GM(< r)

r2

1

⇢
gas

(r)

@[P
th

(r) + P
non�th

(r)]

@r
= �GM(< r)

r2

Not including Pnon-th leads to underestimation of the cluster mass!
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Planck CMB prediction!

with MHSE/Mtrue=0.8

Planck CMB+SZ best fit!
with MHSE/Mtrue=0.6

40% HSE mass bias?!

Planck C
ollaboration XX, arXiv:1303.5080v2



Analytical Model for Non-
Thermal Pressure

• Basic idea 1: non-thermal motion of gas in clusters is 
sourced by the mass growth of clusters [via mergers 
and mass accretion] with efficiency η 

• Basic idea 2: induced non-thermal motion decays 
and thermalizes in a dynamical time scale 

• Putting these ideas into a differential equation:

Shi & Komatsu (2014)

[σ2=P/ρgas]
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approximate fit to!

hydro simulations

η = turbulence  
injection efficiency

β = [turbulence  
decay time] / tdynamical 

Non-thermal fraction increases  
with radii because of slower  
turbulence decay in the outskirts

Shi & Komatsu (2014)
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η = turbulence  
injection efficiency

β = [turbulence  
decay time] / tdynamical 

Non-thermal fraction  
increases with redshifts 
because of faster mass  
growth in early times

Shi & Komatsu (2014)



With Pnon-thermal computed

• We can now predict the X-ray and SZ observables, 
by subtracting Pnon-thermal from Ptotal, which is fixed 
by the total mass 

• We can then predict what the bias in the mass 
estimation if hydrostatic equilibrium with thermal 
pressure is used
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total pressure

predicted !
thermal 

observed therm
al

Shi & Komatsu (2014)

Excellent match 
with observations! 
[black line versus green dashed]
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Typically ~10% mass bias for massive  
clusters detected by Planck; seems difficult  

to get anywhere close to ~40% bias



Remarks on 
Modifications to GR



Testing Modified GR #1
• Modifications to GR generically predict that two potentials in the 

metric are different: Φ ≠ –Ψ 

• This, in principle, modifies gravitational lensing, which is 
proportional to Ψ–Φ. This is equal to 2Ψ in GR, but not in 
modified GR 

• However, in scalar-tensor theories [i.e., modified gravity 
theories in which modifications are equivalent to introducing a 
new scalar degree of freedom], null geodesics is not modified 

• This happens because, schematically, two potentials are 
modified such that Φ -> Φ+β, Ψ -> Ψ+β [where β is some 
function], hence Ψ–Φ is unmodified 

• No effect on gravitational lensing in scalar-tensor theories



Testing Modified GR #1
!

• On the other hand, only Ψ enters in Euler’s equation 
and determines velocities of motion of non-relativistic 
objects [such as galaxies] 

• Ψ is modified from GR even in scalar-tensor theories; 
thus, velocities of galaxies are also modified



Testing Modified GR #1
• Implication:  

• the “dynamical mass” of galaxy clusters estimated 
from velocity dispersion of the member galaxies, and 

• the “lensing mass” estimated from gravitational 
lensing  

• are different in modified GR.  

• E.g., the lensing mass is equal to the true mass in 
scalar-tensor theories of gravity, but the dynamical 
mass is different from the true mass



• In GR, knowing the expansion history of the universe 
yields the growth history of linear perturbations as well 

!

!

!

• In modified GR, there is no such correspondence; 
thus, the data on both the expansion history [i.e., H(z)] 
and the data on the growth history [i.e., g] test 
modifications to GR

Testing Modified GR #2

d2g

d ln(1 + z)2
�


5

2
+

1

2
(⌦k(z)� 3w(z)⌦de(z))

�
dg

d ln(1 + z)

+


2⌦k(z) +

3

2
(1� w(z))⌦de(z)

�
g(z) = 0

*Strictly speaking, this formula is valid when the contribution of DE 
fluctuations to the gravitational potential is negligible compared to matter



Summary
• CMB, galaxy surveys, and galaxy clusters can be used to 

measure two crucial quantities: the expansion rate, H(z), and 
the growth history, g(z), which in turn test the most important 
hypothesis: does the dark energy density vary with time? 

• We did not cover Type Ia supernovae or weak/strong 
gravitational lensing in this lecture, but they also provide 
information on H(z) and g(z) 

• CMB has limited sensitivity to w but provides an important 
anchor [the sound horizon and dA to z=1090] 

• Non-linearity in redshift space distortion must be understood 
before using galaxy surveys to learn about g(z) 

• Understanding the hydrostatic mass bias is the most important 
challenge to using galaxy clusters as a cosmological probe


