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Motivation

• Non-Gaussianity (3- and 4-point functions of 
fluctuations) can be used to rule out (almost) all 
inflation models!

• That’s the slide#42. Please stay awake...
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How Do We Test Inflation?

• How can we answer a simple question like this:

• “How were primordial fluctuations generated?”
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Power Spectrum
• A very successful explanation (Mukhanov & Chibisov; 

Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & 
Turner) is:

• Primordial fluctuations were generated by quantum 
fluctuations of the scalar field that drove inflation.

• The prediction: a nearly scale-invariant power 
spectrum in the curvature perturbation, ζ:

• Pζ(k) = A/k4–ns ~ A/k3

• where ns~1 and A is a normalization.
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ns<1 Observed (at >3σ)

• The latest results from the WMAP 7-year data:

• ns=0.963 ± 0.012 (68%CL; for tensor modes = zero)

• ns≠1: another line of evidence for inflation

• Detection of non-zero tensor modes is a next important 
step

Komatsu et al. (2010)
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Beyond Power Spectrum

• These are based upon fitting the observed power 
spectrum (of scalar and tensor perturbations).

• Is there any more information one can obtain, beyond 
the power spectrum?
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Bispectrum

• Three-point function!

• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)F(k1,k2,k3)
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Why Study Bispectrum?

• It probes the interactions of fields - new piece of 
information that cannot be probed by the power 
spectrum

• But, above all, it provides us with a critical test of the 
simplest models of inflation: “are primordial 
fluctuations Gaussian, or non-Gaussian?”

• Bispectrum vanishes for Gaussian fluctuations.

• Detection of the bispectrum = detection of non-
Gaussian fluctuations 9



Gaussian? WMAP5
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Take One-point Distribution Function

•The one-point distribution of WMAP map looks 
pretty Gaussian.
–Left to right: Q (41GHz), V (61GHz), W (94GHz).

•Deviation from Gaussianity is small, if any.
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Spergel et al. (2008)



Inflation Likes This Result

• According to inflation (Mukhanov & Chibisov; Guth & Yi; 
Hawking; Starobinsky; Bardeen, Steinhardt & Turner), 
CMB anisotropy was created from quantum 
fluctuations of a scalar field in Bunch-Davies 
vacuum during inflation

• Successful inflation (with the expansion factor more than 
e60) demands the scalar field be almost interaction-free

• The wave function of free fields in the ground state is a 
Gaussian!
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But, Not Exactly Gaussian

• Of course, there are always corrections to the simplest 
statement like this.

• For one, inflaton field does have interactions. They are 
simply weak – they are suppressed by the so-called 
slow-roll parameter, ε~O(0.01), relative to the free-field 
action.
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A Non-linear Correction to 
Temperature Anisotropy

• The CMB temperature anisotropy, ΔT/T, is given by the 
curvature perturbation in the matter-dominated era, Φ.

• One large scales (the Sachs-Wolfe limit), ΔT/T=–Φ/3.

• Add a non-linear correction to Φ:

• Φ(x) = Φg(x) + fNL[Φg(x)]2 (Komatsu & Spergel 2001)

• fNL was predicted to be small (~0.01) for slow-roll 
models (Salopek & Bond 1990; Gangui et al. 1994)
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For the Schwarzschild 
metric, Φ=+GM/R.



fNL: Form of Bζ
• Φ is related to the primordial curvature 

perturbation, ζ, as Φ=(3/5)ζ.

• ζ(x) = ζg(x) + (3/5)fNL[ζg(x)]2

• Bζ(k1,k2,k3)=(6/5)fNL x (2π)3δ(k1+k2+k3) x 
[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]
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fNL: Shape of Triangle
• For a scale-invariant spectrum, Pζ(k)=A/k3, 

• Bζ(k1,k2,k3)=(6A2/5)fNL x (2π)3δ(k1+k2+k3) 
x [1/(k1k2)3 + 1/(k2k3)3 + 1/(k3k1)3]

• Let’s order ki such that k3≤k2≤k1. For a given k1, 
one finds the largest bispectrum when the 
smallest k, i.e., k3, is very small.

• Bζ(k1,k2,k3) peaks when k3 << k2~k1

• Therefore, the shape of fNL bispectrum is the  
squeezed triangle!

16(Babich et al. 2004)



Bζ in the Squeezed Limit

• In the squeezed limit, the fNL bispectrum becomes: 
Bζ(k1,k2,k3) ≈ (12/5)fNL x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)
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Single-field Theorem 
(Consistency Relation)

• For ANY single-field models*, the bispectrum in the 
squeezed limit is given by

• Bζ(k1,k2,k3) ≈ (1–ns) x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)

• Therefore, all single-field models predict fNL≈(5/12)(1–ns).

• With the current limit ns=0.963, fNL is predicted to be 
0.015.

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

* for which the single field is solely responsible for driving 
inflation and generating observed fluctuations. 18



Understanding the Theorem

• First, the squeezed triangle correlates one very long-
wavelength mode, kL (=k3), to two shorter wavelength 
modes, kS (=k1≈k2):

• <ζk1ζk2ζk3> ≈ <(ζkS)2ζkL>

• Then, the question is: “why should (ζkS)2 ever care 
about ζkL?”

• The theorem says, “it doesn’t care, if ζk is exactly 
scale invariant.”
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ζkL rescales coordinates

• The long-wavelength 
curvature perturbation 
rescales the spatial 
coordinates (or changes the 
expansion factor) within a 
given Hubble patch:

• ds2=–dt2+[a(t)]2e2ζ(dx)2

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2
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ζkL rescales coordinates

• Now, let’s put small-scale 
perturbations in.

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation?

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2

21



ζkL rescales coordinates

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation? 

• A. No change, if ζk is scale-
invariant. In this case, no 
correlation between ζkL and 
(ζkS)2 would arise. 

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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Real-space Proof
• The 2-point correlation function of short-wavelength 

modes, ξ=<ζS(x)ζS(y)>, within a given Hubble patch 
can be written in terms of its vacuum expectation value 
(in the absence of ζL),  ξ0, as:

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dζL]

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dln|x–y|]

• ξζL ≈ ξ0(|x–y|) + ζL (1–ns)ξ0(|x–y|)

Creminelli & Zaldarriaga (2004); Cheung et al. (2008)

3-pt func. = <(ζS)2ζL> = <ξζLζL>
= (1–ns)ξ0(|x–y|)<ζL2>

• ζS(x)

• ζS(y)
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Where was “Single-field”?

• Where did we assume “single-field” in the proof?

• For this proof to work, it is crucial that there is only 
one dynamical degree of freedom, i.e., it is only ζL that 
modifies the amplitude of short-wavelength modes, and 
nothing else can modify it.

• Also, ζ must be constant outside of the horizon 
(otherwise anything can happen afterwards). This is also 
the case for single-field inflation models.
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Therefore...

• A convincing detection of fNL > 1 would rule out all of 
the single-field inflation models, regardless of:

• the form of potential

• the form of kinetic term (or sound speed)

• the initial vacuum state

• A convincing detection of fNL would be a breakthrough.
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Large Non-Gaussianity 
from Single-field Inflation

• S=(1/2)∫d4x √–g [R–(∂μφ)2–2V(φ)]

• 2nd-order (which gives Pζ)

• S2=∫d4x ε [a3(∂tζ)2–a(∂iζ)2]

• 3rd-order (which gives Bζ)

• S3=∫d4x ε2 […a3(∂tζ)2ζ+…a(∂iζ)2ζ +…a3(∂tζ)3] + O(ε3)

26

Cubic-order interactions are suppressed by an additional factor of ε. 
(Maldacena 2003)

Side 
Note:

But not in the squeezed limit



Large Non-Gaussianity 
from Single-field Inflation

• S=(1/2)∫d4x √–g {R–2P[(∂μφ)2,φ]}    [general kinetic term]

• 2nd-order

• S2=∫d4x ε [a3(∂tζ)2/cs2–a(∂iζ)2]

• 3rd-order

• S3=∫d4x ε2 […a3(∂tζ)2ζ/cs2 +…a(∂iζ)2ζ +…a3(∂tζ)3/cs2] + 
O(ε3)

27

Some interactions are enhanced for cs2<1.
(Seery & Lidsey 2005; Chen et al. 2007)

“Speed of sound”
cs2=P,X/(P,X+2XP,XX)

Side 
Note:

But not in the squeezed limit



• S=(1/2)∫d4x √–g {R–2P[(∂μφ)2,φ]}    [general kinetic term]

• 2nd-order

• S2=∫d4x ε [a3(∂tζ)2/cs2–a(∂iζ)2]

• 3rd-order

• S3=∫d4x ε2 […a3(∂tζ)2ζ/cs2 +…a(∂iζ)2ζ +…a3(∂tζ)3/cs2] + 
O(ε3)

Large Non-Gaussianity 
from Single-field Inflation
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Some interactions are enhanced for cs2<1.
(Seery & Lidsey 2005; Chen et al. 2007)

“Speed of sound”
cs2=P,X/(P,X+2XP,XX)

Side 
Note:

But not in the squeezed limit



Another Motivation For fNL

• In multi-field inflation 
models, ζk can evolve 
outside the horizon.

• This evolution can give rise 
to non-Gaussianity; 
however, causality demands 
that the form of non-
Gaussianity must be local!

Separated by more than H-1

x1 x2
29ζ(x)=ζg(x)+(3/5)fNL[ζg(x)]2+Aχg(x)+B[χg(x)]2+…



The δN Formalism

• The δN formalism 
(Starobinsky 1982; Salopek 
& Bond 1990; Sasaki & 
Stewart 1996) states that 
the curvature 
perturbation is equal to 
the difference in N=lna.

• ζ=δN=N2–N1

• where N=∫Hdt

Separated by more than H-1

x2=x0eζ2

30

Expanded by 
N1=lna1

Expanded by 
N2=lna2

x1=x0eζ1



Getting the familiar result

• Single-field example at the linear order:

• ζ = δ{∫Hdt} = δ{∫(H/φ’)dφ}≈(H/φ’)δφ
• Mukhanov & Chibisov; Guth & Pi; Hawking; 

Starobinsky; Bardeen, Steinhardt & Turner
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Extending to non-linear, 
multi-field cases

• Calculating the bispectrum is then straightforward. 
Schematically:

• <ζ3>=<(1st)x(1st)x(2nd)>~<δφ4>≠0

• fNL~<ζ3>/<ζ2>2

(Lyth & Rodriguez 2005)
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Trispectrum: Next Frontier

• The local form bispectrum, 
Βζ(k1,k2,k3)=(2π)3δ(k1+k2+k3)fNL[(6/5)Pζ(k1)Pζ(k2)+cyc.]

• is equivalent to having the curvature perturbation in position 
space, in the form of:

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2

• This can be extended to higher-order: 

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3
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Local Form Trispectrum
• For ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3, we 

obtain the trispectrum:

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) 
{gNL[(54/25)Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +
(fNL)2[(18/25)Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

fNL2 34



(Slightly) Generalized 
Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) 
{gNL[(54/25)Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] 
+τNL[Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)+Pζ(|k1+k4|))+cyc.]}

The local form consistency relation, 
τNL=(6/5)(fNL)2, may not be respected – 

additional test of multi-field inflation!

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 35



Coming back to δN...

• Calculating the trispectrum is also straightforward. 
Schematically:

• <ζ4>=<(1st)2(2nd)2>~<δφ6>≠0

• fNL~<ζ4>/<ζ2>3

(Lyth & Rodriguez 2005)
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Now, stare at these.
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Change the variable...

(6/5)fNL=∑IaIbI

τNL=(∑IaI)2(∑IbI)2
38



Then apply the 
Cauchy-Schwarz Inequality

• Implies

This holds for almost all (if not all - left unproven) for 
multi-field models!

(Suyama & Yamaguchi 2008)
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Be careful when 0=0

• The Suyama-Yamaguchi inequality does not always hold 
because the Cauchy-Schwarz inequality can be 0=0. For 
example:

In this harmless two-field case, the Cauchy-Schwarz inequality 
becomes 0=0 (both fNL and τNL result from the second term).

In this case, 

(Suyama & Takahashi 2008) 40



But, even in this case...

still satisfies

as long as fNL<18000. Current limit?

(Komatsu et al. 2010) 41



The diagram that you should 
take away from this talk.

• The current limits 
from WMAP 7-year 
are consistent with 
single-field or multi-
field models.

• So, let’s play around 
with the future.

42ln(fNL)

ln(τNL)

74

3.3x104

(Smidt et 
al. 2010)



Case A: Single-field Happiness

• No detection of 
anything after 
Planck. Single-field 
survived the test 
(for the moment: 
the future galaxy 
surveys can 
improve the limits 
by a factor of ten).

ln(fNL)

ln(τNL)

10

600
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Case B: Multi-field Happiness
• fNL is detected. Single-

field is dead.

• But, τNL is also 
detected, in 
accordance with the 
Suyama-Yamaguchi 
inequality, as expected 
from most (if not all - 
left unproven) of multi-
field models.

ln(fNL)

ln(τNL)

600
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Case C: Madness
• fNL is detected. Single-

field is dead.

• But, τNL is not 
detected, inconsistent 
with the Suyama-
Yamaguchi inequality.

• (With the caveat that 
this may not be 
completely general) 
BOTH the single-field 
and multi-field are gone.ln(fNL)

ln(τNL)

30

600

45



An exciting field

Science White Paper submitted to the Cosmology and 
Fundamental Physics (CFP) Science Frontier Panel of the 
Astro 2010 Decadal Survey

46



Summary
• Non-Gaussianity provides the only means (so far) to 

rule out single-field inflation models altogether.

• Non-Gaussianity provides the only, possible means 
(because it has not been proven completely yet) to rule 
out multi-field inflation models altogether.

• As a result, non-Gaussianity can be used to rule out 
inflation models altogether - something that was not 
conceived to be possible before.

See Komatsu, arXiv:1003.6097 for a recent review
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Summary

• Planck is well-position to achieve this.

• If not, inflation still needs to pass more stringent tests 
from (near; ~5 years) future data, reaching fNL~1 and 
τNL~10.

See Komatsu, arXiv:1003.6097 for a recent review
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