Reionization and Cosmological Parameters

Eiichiro Komatsu (Univ. of Texas at Austin) CMBPol Workshop, June 24, 2008

Measuring The Optical Depth of the Universe

-/Lmax

- Optical Depth measured from 1.0 the E-mode power spectrum:
- Tau(5yr)=0.087 +/- 0.017
- Tau(3yr)=0.089 +/- 0.030 (Page et al.; QV only)
- 3-sigma improved to 5-sigma!
- What is WMAP actually measuring?

Signal vs Noise C₁ (unbinned)

- Signal: instantaneous reionization with T=0.090
- WMAP9: CV dominated at I<6
- Planck: CV dominated at I<10, if noise is white
 - I/f noise increases the noise further

- WMAP5 cannot constrain the EE power spectrum at 1>7.
- One has a freedom to choose reionization histories at z > 20.
- You can hide T at z > 20!

Double Reionization

Even more τ can be hidden in the WMAP 5-year data for double reionization (i.e., non-monotonic reionization)

ns - T correlation

0.14

- n_s is closer to unity, if more T is 0.12 hidden in the WMAP data.
- Note that this plot assumes the 0.10 instantaneous reionization.
 - The constraint would be 0.08 relaxed for double reionization models (i.e., non- 0.06 monotonic reionization)

0.04

$(f_{sky}=0.8; I_{max}=30)$

zreion MUCH better than Planck.

Conclusion

- Planck's EE measurement is cosmic variance limited (lby-l) only up to l~10, assuming white noise.
 - Contribution of I/f noise degrades the sensitivity further
 - Note that WMAP9's EE would be cosmic variance limited (I-by-I) up to I~6
- Will the cosmic variance limited experiment improve the limits on reionization histories? Yes, significantly!
- Implications for the cosmological parameters?
 - Accurate determination of n_s is possible only if we can find ALL of T out there.

What I learned yesterday from Elena Pierpaoli

- n_s and T are totally de-correlated for Planck and CMBPol
 - These experiments won't need τ for measuring n_s .
- So, implications of Planck's and CMBPol's reionization measurement for the other cosmological parameters may be a lot less than those for WMAP.
 - In fact, there may be no implication at all.
 - Good news!