Lecture 3

- Temperature anisotropy from sound waves
(continued)

- Cosmological parameter dependence of the
temperature power spectrum
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Stone: Fluctuations
“entering the horizon”

 This is a tricky concept, but it is important

* Suppose that there are fluctuations at all wavelengths,

including the ones that exceed the Hubble length (which we
loosely call our “horizon™)

e Let’s not ask the origin of these “super-horizon
fluctuations”, but just assume their existence

* As the Universe expands, our horizon grows and we can see
longer and longer wavelengths

 Fluctuations “entering the horizon”
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Three Regimes

e Super-horizon scales [q < aH]
 Only gravity is important
e Evolution differs from Newtonian
 Sub-horizon but super-sound-horizon [aH < q < aH/cs]
e Only gravity is important
e Evolution similar to Newtonian
e Sub-sound-horizon scales [q > aH/cs]

* Hydrodynamics important -> Sound waves



AJEQ

e \Which fluctuation entered the horizon before the matter-
radiation equality?

* geq = aeqHeq ~ 0.01 (Qmh2/0.14) Mpc-1

e At the last scattering surface, this subtends the multipole

of lEQ = geqrL ~ 140
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Peak Locations?

High-frequency solution, for g >> aH

0p
L + @ = Acos(qrs) + Bsin(qrs) — R®
4p-,
* VERY roughly speaking, the angular power spectrum C; is given

3 0~
oy [ 3,7 @ |2 with q -> .

* Question: What are the integration constants, A and B?

 Answer: They depend on the initial conditions; namely,
adiabatic or not?

* For adiabatic initial condition, A >> B when q is large

[We will show it later.]



Peak Locations?

High-frequency solution, for g >> aH

0P~
4p-,
* VERY roughly speaking, the angular power spectrum C; is given
8 Dy
by [ ﬁ +‘?5]2With q->\/r

-® = Acos(qrs) + Bsin(grs) — R®.

* |f A>>B, the locations of peaks are

f = (1, 2, "')WTL/rs(tL) — (19 2, ) x 302
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The simple estimates do
not match!

This Is simply because
these angular scales do

oscillations are not pure
cosine even for the




Better Solution In
Radiation-dominated Era

Going back to the original tight-coupling equation..
1 0
a(l+ R) Ot

0 5 4q° a® py/Py _
L+ R) o (3py/py —40)| + o 8+ e

* |n the radiation-dominated era, R << 1

 Change the independent variable from the time (t) to

0 = qr, = 2qt/v/3a



Better Solution In
Radiation-dominated Era

Then the equation simplifies to
where y — 5py /APy — W
* |n the radiation-dominated era, R << 1

 Change the independent variable from the time (t) to

O = qrg = 2qt/\/§a



Better Solution In
Radiation-dominated Era

Then the equation simplifies to

0°X/0p* + X +P+V¥ =0

where X = 5p’y/4,57 )/

The solution is
~ ~ ‘(p
X =Acosp+ Bsing — / dy' sin(p — @' ) (D + ¥)(¢")
0



Better Solution In
Radiation-dominated Era

Then the equation simplifies to

0°X/0p* + X +P+V¥ =0

where X = 5/07/4,57 )/

The solution is

X =(A+ AA)cosp+ (B + AB)sinp

where

©
AAp) = [ dglsing/ @+ 1)),

0

AB(p)

P
_ /O de' cos &' (& + ) ()



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

VW = 47Ga* —5pa

3a

a

(P + Po)dUaq

i ggb = —4A7G S (Pa + Pn)bta

8383(45 — Ep) — —8’/TGCL283'83' Z T



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

Vo

AtGa* > —5pa

3a _

_(}' P060-
a(p.+ )0Uo

i gqs — —A7G 3 (o + Po)dug

8Z63(§Z5 — Q?) — —877Ga28z-8j



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

- 3' N -
VWU = 47?(}0,22 0P a(ﬁa—I—Pa)(Suo,_

a

i ggp — —A7G 3 (o + Po)dug

Will come back to

828] (gp o !p) — —87TGCL287;8 For n;I\:\il?I:;t?gnore

any viscosity.



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

Vo =

AtGa* > —

000

3a

a

(P + Po)dUaq

i ggp — —A7G 3 (o + Po)dug

b=y

Will come back to
this later.
For now, let’s ignhore
any viscosity.



Einstein’s Equations
In Radiation-dominated Era

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

0°d 40P 3

i,

0p?  Op 2¢% PR
ZO;Pa(t)

Za:éPa(t,a:) — Za:ﬁa(t) §5pa(t,az) OP(t, )

“non-adiabatic” pressure



Einstein’s Equations
In Radiation-dominated Era

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

0°® 4 0P

“non-adiabatic” pressure




Kodama & Sasaki (1986, 1987)

Solution (Adiabatic)
In Radiation-dominated Era
D Ap1 = —QC(SiﬂSO — @ COS 90)/903

where

O = qrg = 2qt/\/§a

 Low-frequency limit (super-sound-horizon scales, qrs << 1)
e Pap -> —-27/3 = constant
 High-frequency limit (sub-sound-horizon scales, qrs >> 1)

* Qap -> 2¢ COS tp/(,oz x a”? damp



Solution (Adiabatic)
In Radiation-dominated Era

D ap1 = —2¢(sin p — @ cos 90)/903

whais
Poisson Equation

—q*® = AnGa*bp

& oscillation solution for radiation
0pR/PR X COS P

qcos p/p?loc a™2 damp

 Low-frequency ales, qrs << 1)

e Pap > -20/3
* High-frequency

ales, qrs>> 1)

e Pap > 2



Solution (Adiabatic)
In Radiation-dominated Era
D Ap1 = —QC(SiﬂSO — @ COS 90)/903

where

O = qrg = 2qt/\/§a

 Low-frequency limit (super-sound-horizon scales, qrs << 1)
* Qap -> —@ = constant
 High-frequency limit (sub-sound-horizon scales, qrs >> 1)

* Qap -> 2¢ COS tp/(,oz x a”? damp



Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)
Conserved on large scales

* For the adiabatic initial condition, there exists a useful quantity,

¢, which remains constant on large scales

(super-horizon scales, g << aH) regardless of the contents of
the Universe

* (Cis conserved regardless of whether the Universe is
radiation-dominated, matter-dominated, or whatever

* Energy conservation for q << aH:

3¢ .
5he & (5pe + 0P — 3(pa + Py)¥ = 0

a




Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)

C:

Conserved on large scales

e |f pressure is a function of the energy density only, i.e.,
Fo = Pa(pa), then

1 6pa(t,x)
3 pa(t) + Pu(t)

' Integrate

0P 3; (0pa + 0Ps) — 3(pa + Po)¥ =0

Lp(ta iB) — Ca(m)

integ‘ra;cioh ‘cohstant




Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)

C:

Conserved on large scales

e |f pressure is a function of the energy density only, i.e.,
Pa — a(pa), then

1 pa(t, )
3 pa(t) + P,(t)

- !P(t, ZB) = Ca ((B)

integrétion constant

For the adiabatic initial
condition, all species share the

same value of (g, I.e., CQ=C



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution In the
Radiation-dominated Era

The solution is

X =(A+ AA)cosp+ (B + AB)sin g

where

X =0py/4py — VW

AA(p) = v/opd,a sin @' (@ + W) (¢ :—2§(1—sm (,0/(,0 )
AB(p) = / do' cos @' (P + W) (")

— 2(( — Cosgosmap)/cp



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution In the
Radiation-dominated Era

The solution is

X =(A+ AA)cosp+ (B + AB)sin g

where
v K 1

X =0py /4Py~ ——> ( e, Awi =¢ B =0

v/opd,o sin @' (@ + W) (¢ Z—QC(l—Sln QO/(p )

/ do' cos @' (P + W) (')

AA(p)

AB(¢)

— 2(( — Cosgosmap)/go



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution In the
Radiation-dominated Era

The adiabatic solution is

2
S11 go)
¥

0
X = P !P:C(—cosgol
with

b =Y = —QC(singo— gpcosc,o)/go3

Therefore, the solution is a PUre cosine

only in the high-frequency limit!
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Roles of viscosity

* Neutrino viscosity

* Modify potentials: 0;0;(® — V) = —SWGQQ&'BJ

* Photon viscosity

* Viscous photon-baryon fluid: damping of sound waves
Silk (1968) “Silk damping”

0 0py  qimy _
aﬁ(éu,y/a)—l—d5 | 4/51 2} = o7Ne(0up — 0u~)




High-frequency solution
without neutrino viscosity

The solution is

=(( +AA)cosp+(  AB)singp

where

X =0py/4py — VW

./OLP(]’D sin @' (@ + W) (¢ I—QC(I—SIH QO/(Q )
/ do' cos @' (P + W) (") ] _2C

= 2((p — cos psinp)/p? — ()

AA(p)

AB(¢)




Chluba & Grin (2013)

High-frequency solution
with neutrino viscosity

The solution is

X=(—C+AA,)cospo+ AB, sin ¢

where

X =0py/4py — W

AA, — 0.338R,C
AB, — 0.418R,(




High-frequency solution
with neutrino viscosity

The solution is

X =—C'cos(p + 0)

where

C =+/(-C+ AA,))? + AB?2
~ C(l 1 4RV/15)_ Hu & Sugiyama (1996)

5y
tan 9 — A ~ 00637{' Phase shift!

—(+ AA,

Bashinsky & Seljak (2004)



High-frequency solution

Thus, the neutrino viscosity will:

(1) Reduce the amplitude

of sound waves at large multipoles

2) Shift the peak positions

of the temperature power spectrum

tan 9 — ~ 00637'( Phase shift!

Bashinsky & Seljak (2004)




Photon Viscosity

e |n the tight-coupling approximation, the photon viscosity
damps exponentially

e Jo take into account a non-zero photon viscosity, we go
to a higher order in the tight-coupling approximation



Tight-coupling
Approximation (1st-order)

e \When Thomson scattering is efficient, the relative velocity
between photons and baryons is small. We write

dup — 0u~r = d/oTn,

[d is an arbitrary dimensionless variable]
e And take 07T — OQ *. We obtain

0 0 P~ , d
aa(5UW'/a)+@ | 4)01 =d, OU~ry + P = 7

*In this limit, viscosity rtyis exponentially suppressed. This result comes from
the Boltzmann equation but we do not derive it here. It makes sense physically.




Tight-coupling
Approximation (2nd-order)

e \When Thomson scattering is efficient, the relative velocity
between photons and baryons is small. We write

dup — Uy = di /oM + qda/(077e)"

where
d — R( 5u7 + gp) [d2 is an arbltrary dimensionless varlables]

e Andtake 07N —» OO . We obtain

0 0py QAT ,

;o 5 s J @ I / J — _R (5 i~ @
0 rR(0u, + P) q
D[R] o,
ot OTNe Rornie



Tight-coupling
Approximation (2nd-order)

 Eliminating d> and using the fact that R is proportional to
the scale factor, we obtain
O 8p~  q*Tn 0 {R((g’l‘b\‘, +¢13)] _ 0
> —

1— [(1 dun~fal+(1 P+ —
o (14 R)du~/al+(1+R) i, 2 Y

TTNe

e Getting 1ty requires an approximate solution of the Boltzmann
equation in the 2nd-order tight coupling. We do not derive it
here. The answer is

32 Py O,

415 o TNe A Kaiser (1983)



Tight-coupling
Approximation (2nd-order)

 Eliminating d> and using the fact that R is proportional to
the scale factor, we obtain

0pry  q°T~ 0 [R(&L}, +§Z5)] 0

2p, Ot B

0 :
o (1+ R)du~/a]+(1+R)PA i,

TTNe

e Getting 1ty requires an approximate solution of the Boltzmann
equation in the 2nd-order tight coupling. We do not derive it

here. The answer Is given by the velocity potential
- a well-known result in fluid

32 )57 @ dynamics

— 2
415 o TNe A Kaiser (1983)

Ty =



Damped Oscillator

e Using the energy conservation to replace duy with opy/py,
we obtain, for g >> aH,

1071 0O 0 q°c?
= [ 8f(5pv/pfy)]+2r b 0P~ /P7) 755

New term glvmg damplng'

59/ Py + 41+ R)P] = 0

where

2 _ 2
q 16 R
I'(q,t) =

6a207n. L15(1+R)  (1+ R)2.




Damped Oscillator

e Using the energy conservation to replace duy with opy/py,
we obtain, for g >> aH,

197 0 0 q°c;
e [ af(dpv/ﬂv)]+gra (5P'r//"y)' 72 = [0py/py +4(1+ R)P| =0

New term glvmg damplng'

where Important for high frequencies
o~ (large multipoles)

_ 16 R2 i,

orne LIB(L+R) | (1+ R)2.




Damped Oscillator

e Using the energy conservation to replace duy with opy/py,
we obtain, for g >> aH,

197 0 0 q°c;
e [ af((spv/Pv)]"'QFa (JPW/PW)' 72 = [0py/py +4(1+ R)P| =0

New term glvmg damplng'

SOLUTION:

-t
jfz'y P = [Acos(qrs) + Bsin(grs)| exp —/ dt’ I'(q,t")| — R®
P .




Damped Oscillator

e Using the energy conservation to replace duy with opy/py,
we obtain, for g >> aH,

197 0 0 q°c;
e [ 8t(5P7/Pv)]+2FO (5P7/P'y)' 72 = [0py/py +4(1+ R)P| =0

New term glvmg damplng'

SOLUTION:

j? @ = [Acos(qrs) + Bsin(qrs)] exp(—qz/qgilk ) — R®
v

~ Exponential dampling!

a/qSIlk O-Tne H) 1/2 “diffusion length”

= length traveled by photon’s random walks



Planck Collaboration (2016)
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Additional Damping

* The power spectrum is [ 15 -+ ‘1"]2 with g -> I/r.. The damping factor
7
is thus exp(-292/gsik?)

* sik(t) = 0.139 Mpc-1. This corresponds to a multipole of lsiik ~ gsilk
r./J2 = 1370. Seems too large, compared to the exact calculation

 There is an additional damping due to a finite width of the last
scattering surface, 0~250 K

e “Fuzziness damping” — Bond (1996)

e “Landau damping” - Weinberg (2001)
. 302t2
q
Landau 8@0T2(]- -+ RL)

~(0.20 Mpc ™)



Planck Collaboration (2016)
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Planck Collaboration (2016)
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Matching Solutions

e We have a very good analytical solution valid at low and
high frequencies during the radiation era:

2 .
sSin go)
'

0p

T _ g = (—cosgo |

4p-,

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

0
4/?7 - ® = Acos(qrs) + Bsin(qrs) — R®
P~



Matching Solutions

e We have a very good analytical solution valid at low and
high frequencies during the radiation era:

2 .
sSin go)
P

0p

T U= (—cosgo |

4p-,

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

Slightly improved solution, with a weak time dependence of R using the WKB method
5 [Peebles & Yu (1970)]
P~y

o Te=(+ R)~Y%4[Acos(grs) + Bsin(grs)] — R®
Py




Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

igz P = §{3RT(Q) — (14 R)TV/48(q) coslgrs + 0(9)] }

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

q<<Qea: S—1, T —=1, 6 -0
g>>qea: S—5 T xIng/g? 6 — 0.0627

“EQ” for “matter-radiation Equality epoch”

with geq = aeqHeq ~ 0.01 Mpc-1, giving lea=qgear. ~ 140

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales



Weinberg “Cosmology?”, Eq. (6.5.7)
High-frequency Solution(*)
at the Last Scattering Surface
0 P~ =
4p.,
where T(q), S(qa), 6(q) are “transfer functions” that smoothly interpolate two limits as

Q<<Qgea: S—1, 7T —1, 6 =0

q>>dgea: S — 5 T xIng/q? 6 — 0.0627

EE! - 6 nam o~

7 = ${3RT(@) — (1 + B)/45(@) cosiar + 0()])

ot ~ 140

\:lallel the radiation dominated era  fall



Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

qQ<<Qqeqa: S—1, T —1, 6 -0
g>>qea: S— 5, T xlng/q? |6 — 0.062m

“EQ” for “matter-radiation Equality epocly?

with geq = aeqHeq ~ 0.01 Mpc-1, qgi

Due to the neutrino
e (*) To a good approximation, the low

given by setting R=0 because sound
Important at large scales

anisotropic stress




Weinberg “Cosmology”, Eq. (6.5.7)

High-frequency Solution(*)
at the Last Scattering Surface

fl;: - P = §{3RT(Q) — (1 + R)‘1/4S(q) cos|qrs + H(Q)]}

q -> 0(*) C
>
This should agree with the Sachs-Wolfe result: ®/3; thus,

(I) — —SC / 5 in the matter-dominated era

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales




Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Baryons

0 1/4
4;1 P — §{3RT(‘7) — 1+ R)~Y%S(q) cos[qrs +9(Q)]}

Shift the zero-point of Reduce the amplitude of
oscillations oscillations

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales
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20 | | ' S
- - - R,=0 Effect of baryons

N
N sl — R,=0.61 [Qgh?=0.022]
X - Q,h%=0.14
c:l_\\ Zero-point shift of the
& oscillations
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and Silk damping
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point shift
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Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Total Matter

igz - P = §{3RT(Q) — (14 R)_1/4S(q_) cos|qrs + 9((7)]}

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as
q<<Qea: S—1, T —=1, 6 -0
g>>qea: S—5 T xIng/g? 6 — 0.0627

“EQ” for “matter-radiation Equality epoch”

with geq = aeqHeq ~ 0.01 (Quh2/0.14) Mpc-
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[~ ~ Qg=0.005 Mpc™' [Qmh2=0.07]

— Qge=0.010 Mpc™' [Q,h*=0.14]

Smaller matter density
-> More potential decay
-> Larger boost

qrs/ﬂ { ~ 302 X qrg/m



Recap

e The basic structure of the temperature power spectrum is
e The Sachs-Wolfe “plateau” at low multipoles
e Sound waves at intermediate multipoles
e 1st-order tight-coupling
e Silk damping and Landau damping at high multipoles

e 2nd-order tight-coupling



In More detalls...

 Decay of gravitational potentials boosts the temperature
power at high multipoles by a factor of 5 compared to

the Sachs-Wolfe plateau
* Where this boost starts depends on the total matter density

e Baryon density shifts the zero-point of the oscillation, boosting
the odd peaks relative to the even peaks

e However, the WKB factor (1+R)-1/4 and damping make the

boosting of the 3rd and 5th peaks not so
obvious



Not quite there yet...

* The first peak is too low

 \We need to include the “integrated Sachs-Wolfe effect”

e How to fill zeros between the
peaks?

e \We need to include the Doppler shift of light



