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Planning: Day 1 (today)

e Lecture 1 [8:30-9:15]

e Brief introduction of the CMB research

e Temperature anisotropy from gravitational effects
e Lecture 2[14:00-14:45]

e Power spectrum basics

e Temperature anisotropy from hydrodynamical effects
(sound waves)



Planning: Day 2

e Lecture 3 [8:30-9:15]
e Temperature anisotropy from sound waves [continued]

e Cosmological parameter dependence of the
temperature power spectrum

e Lecture 4 [14:00-14:45]

e Cosmological parameter dependence of the
temperature power spectrum [continued]

e Polarisation



Planning: Day 3

e Lecture 5 [8:30-9:15]
e Polarisation [continued]

e Gravitational waves and their imprints on the CMB



Hot, dense, opaqgue universe
-> “Decoupling” (transparent universe)
-> Structure Formation

From “Cosmic Voyage™
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All you need to do is to detect radio
waves. For example, 1% of noise on
the TV is from the fireball Universe






1:25 model of the antenna at Bell Lab

The 3rd floor of Deutsches Museum




The real detector system used by Penzias & Wilson
The 3rd floor of Deutsches Museum
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Brightness

¢ Rocket (COBRA)
a Satellite (COBE/FIRAS)

¢ Ground-based
+ Balloon-borne

" 'Spectrum of CMB
- = Planck Spectrum
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: i - - Dark Energy
This morning: nght_ Propagation " Accelerated Expansion
Afterglow Light in a Clumpy Universe
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.
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This afternoon: Hydrodynamics at LSS Dark Energy

Accelerated Expansion
Afterglow Light

Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation




Other lecturers: Lensing, SZ, Recombination Dark Energy

cceliepy

Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.
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Notation

e Notation in my lectures follows that of the text book
“Cosmology” by Steven Weinberg
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Cosmological Parameters

e Unless stated otherwise, we shall assume a spatially-flat
A Cold Dark Matter (A\CDM) model with

QBh2 = ().022 [baryon density]

(03Y h? = (0.14 [total mass density]

2p = 0.3

which implies:

2, =0.7, 2ph?=0.118, 25 = 0.04714

Hy =100 h km s~' Mpc™'; Hy = 68.31 km s~! Mpc™!



How light propagates in a
clumpy universe?

* Photons gain/lose energy by gravitational blue/redshifts

this lecture

* Photons change their directions via gravitational lensing




Distance between
two points In space

e Static (i.e., non-expanding) Euclidean space

e In Cartesian coordinates = = (z,, 2)

ds* = dx? + dy?* + dz*



Distance between
two points In space

e Homogeneously expanding Euclidean space

* |In Cartesian comoving coordinates = = (z, v, 2)

ds* =\a*(t)(dz* + dy* + dz*)



Distance between
two points In space

e Homogeneously expanding Euclidean space

* |n Cartesian comoving coordinates = = (z,y, 2)

3

ds® =a®(t) X Z 0ij dx’dax’

=1 9=

5 =1 for izj

=0 otherwise



Distance between
two points In space

 |[nhomogeneous curved space

* |n Cartesian comoving coordinates x = (z,v, 2)

ds® =a’ z z (655 +H hij)dx'da?

1—1 J “metric perturbation”
-> CURVED SPACE!
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Not just space...

e Einstein told us that a clock ticks slowly when gravity is
strong...

e Space-time distance, dss, is modified by the presence of
gravitational fields

3 3 o
= —exp(29)dt? + a’ exp(—2¥) T T exp(D)];jdx’dx’

@ : Newton’s gravitational potential

/ : Spatial scalar curvature perturbation

Dz j : Tensor metric perturbation [=gravitational waves]



Tensor perturbation Di:
Area-conserving deformation

e Determinant of a matrix

1 3 1
exp(D)lij = i+ Dij+5 3 DieDij+ ¢ 3 DikDim D+ -+
k=1 km

IS given by exp(z Dii)

e Thus, Dj must be trace-less z D.. =0

If it is area-conserving deformatlon of two points In space

e * g3
- a »



Not just space...

e Einstein told us that a clock ticks slowly when gravity is
strong...

e Space-time distance, dss, is modified by the presence of
gravitational fields

ds? = —exp(29P)dt? + a* exp(— Y. > lexp(D)];dxt dx?

i=1j=1

@ : Newton’s gravitational potential

gp' : Spatial scalar curvature perturbation
Is a perturbation to the determinant of spatial metric



Evolution of
photon’s coordinates

e Photon’s path is determined such that the distance
traveled by a photon between two points is minimised.
This yields the equation of motion for photon’s

coordinates P — (t,a}i) R
y
d? y dxt dx”
du? Z Z Yo g de =Y
U —0 v=0 U U “u” labels
photon’s path>
X

This equation is known as the “geodesic equation”.
The second term is needed to keep the form of the equation unchanged
under general coordinate transformation => GRAVITATIONAL EFFECTS!



Evolution of
photon’s momentum

e |t is more convenient to write down the geodesic equation
In terms of the photon momentum:

7!
0 dx
P = i
then | y
A e
ap p p”
g Z Z =0
p=0 =0 p “u” labels
photon’s path>
Magnitude of the photon momentum is equal to the photon energy: X

p° =>1> 9i; 0"’



Some calculations...
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Recap

Math may be messy but the concept is transparent!

* Requiring photons to travel between two points in
space-time with the minimum path length, we obtained
the geodesic equation

 The geodesic equation contains F‘;\V that is required to
make the form of the equation unchanged under
general coordinate transformation

e EXpressing F;;\,, In terms of the metric perturbations, we
obtain the desired result - the equation that describes
the rate of change of the photon energy!

Q_L nggppj

1=1 9=




Sachs & Wolfe (1967)

The Result

1 dp a . 1 od . 1 .
=~ ¥ o~ Dy

pdt a a ;

v' is a unit vector of the direction of
photon’s momentum:

>(v)r =1

0

e Let’s interpret this equation physically



Sachs & Wolfe (1967)

The Result

1 dp al - 1 od . 1 L
S A DAt o WPV
pdt a a ; 633%/}/ 2 i J’Yf}/

vi is a unit vector of the direction of
photon’s momentum:

>(v)r =1

0

* Photon’s wavelength is stretched in proportion to the
scale factor, and thus the photon energy decreases as

poca_l



Sachs & Wolfe (1967)

The Result

1dp &l .| 106 . 1_ . .
— " Dy

pdt  a a

e The spatial metric is given by ds* = a?(t) exp(—2¥)dx?

e Thus, locally we can define a new scale factor:
a(t,x) = a(t) exp(—V)
e Then the photon momentum decreases as

poca



Sachs & Wolfe (1967)

The Result

1 dp a - 1 obd .| 1 L
— I Sp ‘ v D’L ALY |
p dt a a ZZ: ozi | | 2 %: i
* Gravitational blue/redshift ( )
P N N

\ay/

Potential well (¢ < 0)



Sachs & Wolfe (1967)

The Result

1 dp a . 100 . 1_. . ..
— } Sp : v DZ (N |
p dt a a;(’)x“fy 2%: i
* Gravitational blue/redshift ( )
h+ hx O

0 0 0



Sachs & Wolfe (1967)

The Result

— ' 108 D'y’
pdt  a azz-:aﬂ?ﬂ 2%: Y

Y
» Gravitational blue/redshift ( ) 1

h_|_ hx O //4\\ F\+>O
Dij=1 hx —hy O
0 0 0




Sachs & Wolfe (1967)

Formal Solution (Scalar)

“L” for “Last scattering surface” ptg . .
In(ap)(to) = In(ap)(tL)+ D(tr) — P(to) +f dt (2+ V)
lr
or 1 .00 , db .
AT () ST (tr,, orp) LA
L L ~
— — - D(tg,, — P(to, 0
T (i) (tr,nrr) — (o, 0)
to . .
+ / dt (D +V)(t,nr) Line-of-sight direction
" it = —*
+2fdt P +®(tr) Coming distance (r)
SN N N N ; ~d
w w e
to dt/
(T :/
&) ¢ a(t’)




Sachs & Wolfe (1967)

Formal Solution (Scalar)

AT(’fL) (5T(tL, fLT’L)
_ 2 - B(ty, fry) — Bto, 0
T (i) (tr,nrr) — (o, 0)
to . .
+ / dt (D +V)(t,nr) Line-of-sight direction
" it = —'
+2/dt P +®(tr) Coming distance (r)
e W WY N N 3 ~d
w N v
to dt/
(T :/
&) ¢ a(t’)




Sachs & Wolfe (1967)

Formal Solution (Scalar)

Gravitational Redshit

Line-of-sight direction

oY) ()

n' = —vy

Comoving distance (r)

' =n'r

0= [




Sachs & Wolfe (1967)

Formal Solution (Scalar)

. Line-of-sight direction |

A7 7

n' = —vy

. Coming distance (r)

xt =n'r

to dt p
, t) = ;
: 4 /t a(t') |

T(tr)



Initial Condition

+2/dt P +P(tr)
M\/v/\/
o1 (tr)
T(tr,)

® "|Vere photons hot or cold at the bottom of the potential well at
the last scattering surface?”

 This must be assumed a priori - only the data can tell us!



“Adiabatic” Initial Condition

o Definition: “Ratios of the number densities of all species are
equal everywhere initially”

 For ith and jth species, ni(x)/nj(x) = constant

 For a quantity X(t,x), let us define the fluctuation, 6X, as

0X(t,x) = X(t,x) — X (1)
e Then, the adiabatic initial condition is

5”72 (tinitiala X) o 5”3’ (tinitiala X)

i (Linitial) 1 (tinitial)




Example:
Thermal Equilibrium

e \WWhen photons and baryons were in thermal equilibrium in
the past, then

® Nphoton ~ T2 @and Nparyon ~ T3

 That is to say, thermal equilibrium naturally gives the
adiabatic initial condition

+ This gives 3(5T(ti,a:) - opp(ti, )
T(tz) ﬁB(ti)

o “B” for “Baryons”
e pis the mass density




Big Question

e How about dark matter?

e |f dark matter and photons were in thermal equilibrium in

the past, then they should also obey the adiabatic initial
condition

* |f not, there is no a priori reason to expect the adiabatic
Initial condition!

e The current data are consistent with the adiabatic initial
condition. This means something important for the nature
of dark matter!

We shall assume the adiabatic initial

condition throughout the lectures



Adiabatic Solution

+2/dt P +P(tr)
NSNS TN o R . W

o\

5T (t1)

T(tr)

e At the last scattering surface, the temperature fluctuation
IS given by the matter density fluctuation as

5T(tL7X) _ 1 510M(tL7X)

T(tr) 3 pumltr)




Adiabatic Solution

+‘2/dt P +®(tr,)
L e W N N N

o\

5T (t1)

T(tr)

 On large scales, the matter density fluctuation during the
matter-dominated era is given by dpy; /ppr = —29; thus,

ol (tr,x) B 1 oppr(tr,x) _ 2<I>(75 X)
9 L s

Hot at the bottom of
the potential well, but...

T(tr) 3 pumltr)



Over-density = Cold spot

df i

W &z/

()T fL

e Therefore: AT(TL) 1
— —®(ty, 7

This is negative in an over-density region!







