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Dark Energy

• Everybody talks about it...

• What exactly do we 
need Dark Energy for?

Baryon
Dark Matter
Dark Energy



Need For Dark “Energy”

• First of all, DE does not even need to be energy. 

• At present, anything that can explain the observed 

(1) Luminosity Distances (Type Ia supernovae)

(2) Angular Diameter Distances (BAO, CMB)

simultaneously is qualified for being called “Dark Energy.”

• The candidates in the literature include: (a) energy, (b) 
modified gravity, and (c) extreme inhomogeneity.



μ = 5Log10[DL(z)/Mpc] + 25

Wood-Vasey et al. (2007)Redshift, z

Current Type Ia Supernova Samples

w(z)=PDE(z)/ρDE(z) 
              =w0+wa z/(1+z)



Wood-Vasey et al. (2007)Redshift, z

Current Type Ia Supernova Samples

[residuals to this model]

w(z)=w0+wa z/(1+z)



• Within the standard 
framework of 
cosmology based on 
General Relativity...

• There is a clear 
indication that the 
matter density alone 
cannot explain the 
supernova data.

• Need Dark Energy.
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• Within the standard 
framework of 
cosmology based on 
General Relativity...

• Dark Energy is 
consistent with 
“vacuum energy,” 
a.k.a. cosmological 
constant.

• The uncertainty is 
still large. Goal: 10x 
reduction in the 
uncertainty. [StageIV]

Wood-Vasey et al. (2007)

Vacuum Energy

w(z) = PDE(z)/ρDE(z) = w0+waz/(1+z)

Current Type Ia Supernova Samples



DL(z) = (1+z)2 DA(z)

• To measure DA(z), we need to know the intrinsic size.

• What can we use as the standard ruler?

Redshift, z
0.2 2 6 1090

Type 1a Supernovae

Galaxies (BAO) CMB

DL(z)

DA(z)

0.02



How Do We Measure DA(z)?

• If we know the intrinsic physical sizes, d, we can 
measure DA. What determines d?

Redshift, z
0.2 2 6 1090

Galaxies

CMB

0.02

DA(galaxies)=dBAO/θ
dBAO

dCMB

DA(CMB)=dCMB/θ

θ

θ



Just To Avoid Confusion...

• When I say DL(z) and DA(z), I mean “physical distances.” 
The “comoving distances” are (1+z)DL(z) and 
(1+z)DA(z), respectively.

• When I say dCMB and dBAO, I mean “physical sizes.” The 
“comoving sizes” are (1+zCMB)dCMB and (1+zBAO)dBAO, 
respectively. 

• Sometimes people use “r” for the comoving sizes. 

• E.g., rCMB = (1+zCMB)dCMB, and rBAO = (1+zBAO)dBAO.



CMB as a Standard Ruler

• The existence of typical spot size in image space yields 
oscillations in harmonic (Fourier) space. What 
determines the physical size of typical spots, dCMB?
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θ~the typical size of hot/cold spots
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Sound Horizon
• The typical spot size, dCMB, is determined by the 

physical distance traveled by the sound wave 
from the Big Bang to the decoupling of photons at 
zCMB~1090 (tCMB~380,000 years).

• The causal horizon (photon horizon) at tCMB is given by

• dH(tCMB) = a(tCMB)*Integrate[ c dt/a(t), {t,0,tCMB}].

• The sound horizon at tCMB is given by 

• ds(tCMB) = a(tCMB)*Integrate[ cs(t) dt/a(t), {t,0,tCMB}], 
where cs(t) is the time-dependent speed of sound 
of photon-baryon fluid.



• The WMAP 3-year Number:

• lCMB = π/θ = πDA(zCMB)/ds(zCMB) = 301.8±1.2

• CMB data constrain the ratio, DA(zCMB)/ds(zCMB).

lCMB=301.8±1.2

Hinshaw et al. (2007)



• Color: constraint from 
lCMB=πDA(zCMB)/ds(zCMB) 
with zEQ & Ωbh2.

• Black contours: Markov 
Chain from WMAP 3yr 
(Spergel et al. 2007)

What DA(zCMB)/ds(zCMB) 
Gives You

lCMB=301.8±1.2

1-Ωm-ΩΛ = 
0.3040Ωm
+0.4067ΩΛ
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10 Percival et al.

Fig. 12.— The redshift-space power spectrum recovered from the combined SDSS main galaxy and LRG sample, optimally weighted for
both density changes and luminosity dependent bias (solid circles with 1-σ errors). A flat Λ cosmological distance model was assumed with
ΩM = 0.24. Error bars are derived from the diagonal elements of the covariance matrix calculated from 2000 log-normal catalogues created
for this cosmological distance model, but with a power spectrum amplitude and shape matched to that observed (see text for details).
The data are correlated, and the width of the correlations is presented in Fig. 10 (the correlation between data points drops to < 0.33 for
∆k > 0.01 h Mpc−1). The correlations are smaller than the oscillatory features observed in the recovered power spectrum. For comparison
we plot the model power spectrum (solid line) calculated using the fitting formulae of Eisenstein & Hu (1998); Eisenstein et al. (2006), for
the best fit parameters calculated by fitting the WMAP 3-year temperature and polarisation data, h = 0.73, ΩM = 0.24, ns = 0.96 and
Ωb/ΩM = 0.174 (Spergel et al. 2006). The model power spectrum has been convolved with the appropriate window function to match the
measured data, and the normalisation has been matched to that of the large-scale (0.01 < k < 0.06 hMpc−1) data. The deviation from
this low ΩM linear power spectrum is clearly visible at k >

∼
0.06 hMpc−1, and will be discussed further in Section 6. The solid circles with

1σ errors in the inset show the power spectrum ratioed to a smooth model (calculated using a cubic spline fit as described in Percival et al.
2006) compared to the baryon oscillations in the (WMAP 3-year parameter) model (solid line), and shows good agreement. The calculation
of the matter density from these oscillations will be considered in a separate paper (Percival et al. 2006). The dashed line shows the same
model without the correction for the damping effect of small-scale structure growth of Eisenstein et al. (2006). It is worth noting that this
model is not a fit to the data, but a prediction from the CMB experiment.

BAO as a Standard Ruler

• The existence of a localized clustering scale in the 2-point 
function yields oscillations in Fourier space. What 
determines the physical size of clustering, dBAO?
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Sound Horizon Again
• The clustering scale, dBAO, is given by the physical distance 

traveled by the sound wave from the Big Bang to the 
decoupling of baryons at zBAO~1080 (c.f., zCMB~1090).

• The baryons decoupled slightly later than CMB.

• By the way, this is not universal in cosmology, but 
accidentally happens to be the case for our Universe. 

• If 3ρbaryon/(4ρphoton) =0.64(Ωbh2/0.022)(1090/(1+zCMB)) is 
greater than unity, zBAO>zCMB. Since our Universe 
happens to have Ωbh2=0.022, zBAO<zCMB. (ie, dBAO>dCMB)



The Latest BAO Measurements

• 2dFGRS and SDSS 
main samples at z=0.2

• SDSS LRG samples at 
z=0.35

• These measurements 
constrain the ratio, 
DA(z)/ds(zBAO).

Percival et al. (2007)

z=0.2

z=0.35



Not Just DA(z)...

• A really nice thing about BAO at a given redshift is that 
it can be used to measure not only DA(z), but also the 
expansion rate, H(z), directly, at that redshift.

• BAO perpendicular to l.o.s 

=> DA(z) = ds(zBAO)/θ

• BAO parallel to l.o.s 

=> H(z) = cΔz/[(1+z)ds(zBAO)]



Measuring DA(z) & H(z)

2D 2-pt function from 
the SDSS LRG samples 
(Okumura et al. 2007)

(1+z)ds(zBAO)

θ = ds(zBAO)/DA(z)

cΔz/(1+z) 
= ds(zBAO)H(z)

Linear Theory Data



DV(z) = {(1+z)2DA2(z)[cz/H(z)]}1/3

Percival et al. (2007)Redshift, z
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Since the current data are not good enough to 
constrain DA(z) and H(z) separately, a combination 

distance, DV(z), has been constrained. 

Ωm=1, ΩΛ=1
Ωm=0.3, ΩΛ=0
Ωm=0.25, ΩΛ=0.75



CMB + BAO => Curvature
• Both CMB and BAO 

are absolute 
distance indicators.

• Type Ia supernovae 
only measure relative 
distances.

• CMB+BAO is the 
winner for 
measuring spatial 
curvature.



BAO: Current Status

• It’s been measured from SDSS main/LRG and 2dFGRS.

• The successful extraction of distances demonstrated. 
(Eisenstein et al. 2005; Percival et al. 2007)

• CMB and BAO have constrained curvature to 2% level. 
(Spergel et al. 2007)

• BAO, CMB, and SN1a have been used to constrain 
various properties of DE successfully. (Many authors)



BAO: Challenges

• Non-linearity, Non-linearity, 
and Non-linearity!

1. Non-linear clustering

2. Non-linear galaxy bias

3. Non-linear peculiar vel.

Is our theory ready for the 
future precision data?
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Data
Linear Theory 

Model

Do we trust this theory?



Toward Modeling 
Non-linearities

• Conventional approaches:

• Use fitting functions to the numerical simulations

• Use empirical “halo model” approaches

• Our approach:

• The linear (1st-order) perturbation theory works 
beautifully. (Look at WMAP!) Let’s go beyond that.

• The 3rd-order Perturbation Theory (PT)



Is 3rd-order PT New?

• No, it’s actually quite old. (25+ years)

• A lot of progress made in 1990s (Bernardeau et al. 2002 
for a comprehensive review published in Phys. Report)

• However, it has never been applied to the real data, and it 
was almost forgotten. Why?

• Non-linearities at z=0, for which the galaxy survey 
data are available today, are too strong to model by PT 
at any orders. PT had been practically useless.



Why 3rd-order PT Now?

• Now, the situation has changed, dramatically.

• The technology available today is ready to push the 
galaxy surveys to higher redshifts, i.e., z>1.

• Serious needs for such surveys exist: Dark Energy Task 
Force recommended BAO as the “cleanest” method for 
constraining the nature of Dark Energy.

• Proposal: At z>1, non-linearities are much 
weaker. We should be able to use PT.



Perturbation Theory 
“Reloaded”

• My message to those who have worked on the 
cosmological perturbation theory in the past but left the 
field thinking that there was no future in that direction...

Come Back Now!
Time Has Come!



Three Equations To Solve
• Focus on the clustering on large scales, where baryonic 

pressure is completely negligible.

• Ignore the shell-crossing of matter particles, which 
means that the velocity field is curl-free: rotV=0.

• We just have simple Newtonian fluid equations:



In Fourier Space

• Here,                   is the “velocity divergence.”

– 8 –

our using θ ≡ ∇ · v, the velocity divergence field. Using equation (5) and the Friedmann

equation, we write the continuity equation [Eq. (3)] and the Euler equation [Eq. (4)] in

Fourier space as

δ̇(k, τ ) + θ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k · k1

k2
1

δ(k2, τ )θ(k1, τ ), (6)

θ̇(k, τ ) +
ȧ

a
θ(k, τ ) +

3ȧ2

2a2
Ωm(τ )δ(k, τ )

= −

∫

d3k1

(2π)3

∫

d3k2δD(k1 + k2 − k)
k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ )θ(k2, τ ),

(7)

respectively.

To proceed further, we assume that the universe is matter dominated, Ωm(τ ) = 1

and a(τ ) ∝ τ 2. Of course, this assumption cannot be fully justified, as dark energy

dominates the universe at low z. Nevertheless, it has been shown that the next-to-leading

order correction to P (k) is extremely insensitive to the underlying cosmology, if one

uses the correct growth factor for δ(k, τ ) (Bernardeau et al. 2002). Moreover, as we are

primarily interested in z ≥ 1, where the universe is still matter dominated, accuracy of our

approximation is even better. (We quantify the error due to this approximation below.) To

solve these coupled equations, we shall expand δ(k, τ ) and θ(k, τ ) perturbatively using the

n-th power of linear solution, δ1(k), as a basis:

δ(k, τ ) =
∞

∑

n=1

an(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Fn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn), (8)

θ(k, τ ) = −
∞

∑

n=1

ȧ(τ )an−1(τ )

∫

d3q1

(2π)3
· · ·

d3qn−1

(2π)3

×

∫

d3qnδD(
n

∑

i=1

qi − k)

×Gn(q1, q2, · · · , qn)δ1(q1) · · · δ1(qn). (9)



Taylor Expanding in δ1

• δ1 is the linear perturbation.
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Here, the functions F and G follows the following recursion relations with the trivial initial

conditions, F1 = G1 = 1. (Jain & Bertschinger 1994)



Collect Terms Up To δ13

• δ=δ1+δ2+δ3, where δ2=O(δ12) and δ3=O(δ13).

• The power spectrum, P(k)=PL(k)+P22(k)+2P13(k), is 
given by

Odd powers in δ1 vanish (Gaussianity) 

PL

P13 P13P22



P(k): 3rd-order Solution

• F2(s) is the known function. (Goroff et al. 1986)

Vishniac (1983); Fry (1984); Goroff et al. (1986); Suto&Sasaki (1991); 
Makino et al. (1992); Jain&Bertschinger (1994); Scoccimarro&Frieman (1996)

– 10 –

where

P22(k) = 2

∫

d3q

(2π)3
PL(q)PL(|k − q|)

[

F (s)
2 (q, k − q)

]2
, (16)

2P13(k) =
2πk2

252
PL(k)

∫ ∞

0

dq

(2π)3
PL(q)

×

[

100
q2

k2
− 158 + 12

k2

q2
− 42

q4

k4

+
3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(

k + q

|k − q|

)

]

, (17)

where PL(k) stands for the linear power spectrum. While F (s)
2 (k1, k2) should be

modified for different cosmological models, the difference vanishes when k1 ‖ k2.

The biggest correction comes from the configurations with k1 ⊥ k2, for which

[F (s)
2 (ΛCDM)/F (s)

2 (EdS)]2 % 1.006 and ! 1.001 at z = 0 and z ≥ 1, respectively. Here,

F (s)
2 (EdS) is given by equation (13), while F (s)

2 (ΛCDM) contains corrections due to Ωm '= 1

and ΩΛ '= 0 (Matsubara 1995; Scoccimarro et al. 1998), and we used Ωm = 0.27 and

ΩΛ = 0.73 at present. The information about different background cosmology is thus almost

entirely encoded in the linear growth factor. We extend the results obtained above to

arbitrary cosmological models by simply replacing a(τ ) in equation (15) with an appropriate

linear growth factor, D(z),

Pδδ(k, z) = D2(z)PL(k) + D4(z)[2P13(k) + P22(k)]. (18)

We shall use equation (16)–(18) to compute P (k, z).

2.2. Non-linear Halo Power Spectrum : Bias in 3rd order PT

In this section, we review the 3rd-order PT calculation as the next-to-leading

order correction to the halo power spectrum. We will closely follow the calculation of

(McDonald 2006). In the last section, we reviewed the 3rd-order calculation of matter

power spectrum. Here, the basic assumptions and equations are the same previous section,

but to get the analytic formula for the halo power spectrum, we need one more assumption,



3rd-order PT vs Simulations
Jeong & Komatsu (2006)



Distortions on BAO
Jeong & Komatsu (2006)

3rd-order PTSimulation

Linear theory



A Quote: P. McDonald (2006)

“...this perturbative approach to the galaxy power 
spectrum (including beyond-linear corrections) 
has not to my knowledge actually been used to 
interpret real data. However, between 
improvements in perturbation theory and the 
need to interpret increasingly precise 
observations, the time for this kind of approach 
may have arrived (Jeong & Komatsu, 2006).”



How About Galaxies?

• But, I am sure that you are not impressed yet...

• What we measure is the galaxy power spectrum. 

• Who cares about the matter power spectrum?

• How can we make it work for galaxies?



Locality Assumption

• Galaxies are biased tracers of the underlying matter 
distribution. How biased are they?

• Usual “linear bias” model: Pg(k)=b12 P(k), where b1 
(linear bias) is a constant multiplicative factor.

• How do we extend this to non-linear cases?

• Assumption: the galaxy formation process is a 
local process, at least on the large scales that we 
care about.



Taylor Expanding δg in δ
δg(x) = c1δ(x) + c2δ2(x) + c3δ3(x) + O(δ4) + ε(x)

where δ is the non-linear matter fluctuations, and 
ε is the stochastic “noise,” which is uncorrelated 
with matter density fluctuations: <δ(x)ε(x)>=0.

• This is “local,” in the sense that they are all 
evaluated at the same spatial location, x.

• The locality assumption must break down at a 
certain point. So, we only care about the scales on 
which the locality is a good approximation.

Gaztanaga & Fry (1993); McDonald (2006)



Galaxy Power Spectrum

• Bias parameters, b1, b2, & N, are related to c1, c2, & c3. 

• They capture information about galaxy formation, but 
we are not interested in that.

• Instead, we will marginalize over b1, b2, & N.

Pg(k)

McDonald (2006)



Millennium “Galaxy” 
Simulations

• Now, we want to test the analytical model with 
cosmological simulations of galaxies.

• However, there aren’t any ab-initio cosmological 
simulations of galaxies yet.

• The best available today: the Millennium Simulation 
(Springel et al. 2005), coupled with the semi-analytical 
galaxy formation codes.

• MPA code: De Lucia & Blaizot (2007)

• Durham code: Croton et al. (2006)



3PT vs MPA Galaxies
• kmax is where the 

3rd-order PT fails 
to fit the matter 
power spectrum.

• This is also where 
we stop using the 
data for fitting the 
bias parameters.

• Non-linear bias 
model is clearly 
better at k<kmax.

Jeong & Komatsu (2007)



Non-linear Bias on BAO
• It is quite clear 

that the non-linear 
bias is important 
on the BAO scale.

• The Millennium 
Simulation’s box 
size (500 Mpc)3 is 
not very large.

• A large sampling 
variance on the 
BAO scale.

Jeong & Komatsu (2007)



Effects of Galaxy Mass
• The effects of 

galaxy masses: the 
higher the mass is, 
the higher and 
more non-linear 
the bias becomes.

• The model fits the 
data regardless of 
the galaxy masses.

• Higher bias does 
not spoil PT!

Jeong & Komatsu (2007)



“So What?,” You Asked...

• I am sure that you are still underwhelmed, thinking 
“You have 3 parameters! I can fit anything 
with 3 parameters!” You are not alone.

• “With four parameters I can fit an elephant, and with five I 
can make him wiggle his trunk.” - John von Neumann

• Our goal is to answer this question, “After all this 
mess, can we recover the correct DA(z) and 
H(z) from the galaxy power spectrum?”



Extracting DA(z) from Pg(k)
• Conclusion

We could extract 
DA(z) from the 
Millennium “Galaxy” 
Simulation successfully, 
at z>2.

(The bias parameters 
are marginalized over.)

• z=1 is still a challenge.

Jeong & Komatsu (2007)

DA/DA(input)DA/DA(input)

DA/DA(input)

DA/DA(input) DA/DA(input)

DA/DA(input)

1σ

1σ

1σ



Where Are We Now?

• Non-linear clustering is under control at z>2.

• Non-linear galaxy bias seems under control, as long as 
the underlying matter power spectrum is under 
control. 

• Extraction of distances from Pg(k) demonstrated 
explicitly with the best simulation available today.



What Needs To Be Done?

• Understand non-linear clustering at z=1.

• Recent new developments, “renormalized PT,” by 
Crocce&Scoccimarro; Matarrese&Pietroni; Velageas; 
Taruya; Matsubara. 

• Run larger galaxy simulations for better statistics.

• Do the same thing for the bispectrum (three-point 
function), which improves the determinations of bias 
significantly (Sefusatti & Komatsu 2007). [on-going]



Three-point Function
• The 3pt function (the so-called reduced bispectrum) depends 

on the bias parameters as 

Qg(k1,k2,k3)=(1/b1)[Qm(k1,k2,k3)+b2]
The matter bispectrum, Qm, is computed from PT.

• This method has been applied to 2dFGRS. (Verde et al. 
2002): At z=0.17, b1=1.04 ± 0.11; b2=-0.054 ± 0.08

•For high-z surveys, we can improve the accuracy by an order 
of magnitude. (Sefusatti & Komatsu 2007)

•The bispectrum gives us a very important cross-check of the 
accuracy of bias parameters extracted from Pg(k).



The Major Challenge

• I do not have much time to talk about this, but the 
most challenging task is to get the peculiar velocity 
effect, called “redshift space distortion,” under control. 

• Understanding this is essential for measuring H(z).

• There is no rigorous PT solution to this problem now, 
except for some empirical fitting approaches.

• Theoretical breakthrough is required here. 



Redshift Space Distortion

•(Left) Coherent flow => clustering enhanced along l.o.s
–“Kaiser” effect

•(Right) Virial motion => clustering reduced along l.o.s.
–“Finger-of-God” effect



Redshift Space Distortion



Current State of PTredshift space

• The non-linear Kaiser 
effect is modeled by 
PT well (see z=5&6)

• However, the theory 
prediction fails badly, 
even at z=3.

• The theory 
overestimates the 
power => the power 
suppression due to 
the Finger-of-God.



Current State of PTredshift space

• Here, the Finger-of-
God is parameterized 
by the velocity 
dispersion, which is 
treated as an 
unknown parameter.

• We need a better 
way to model this 
without parameters.



Where Are We Going?

• BAO Experiments: Ground-based spectroscopic surveys 
[“low-z” = z<1; “mid-z” = 1<z<2; “high-z” = z>2]

• Wiggle-Z (Australia): AAT/AAOmega, on-going, low-z

• FastSound (Japan): Subaru/FMOS, 2008, mid-z (Hα)

• BOSS (USA): SDSS-III, 2009, low-z (LRG);high-z (LyαF)

• HETDEX (USA): HET/VIRUS, 2011, high-z (LyαE)

• WFMOS (Japan+?): >2011, low-z (OII); high-z (LBG)



Where Are We Going?

• BAO Experiments: Space-borne spectroscopic surveys

• SPACE (Europe): >2015, all-sky, z~1 (Hα)

• ADEPT (USA): >2017, all-sky, z~1 (Hα)

• CIP (USA): >2017, 140 deg2, 3<z<6 (Hα)

• These are Dark Energy Task Force “Stage IV” 
experiments. (Ie, DE constraints >10x better than now.)



Where Is Japan’s 
Cosmology Going?

• Japan’s cosmology needs experiments. Desperately. 

• No experiments, no growth, no glory, no future.

• Can BAO help Japan’s cosmology grow stronger?

• BAO is definitely the main stream science.

• The scientific impact is large.

• Serious competitions. 



Where Is Japan’s 
Cosmology Going?

• The message from the current state of competitions is 
pretty clear to me: whoever succeeded in carrying out the 
Stage IV experiment would win the game.

• Yes, there will be many ground-based experiments, but...

• Something to learn from the success of WMAP

• Why should we stop at the ground-based experiments?



Pre-WMAP vs Post-WMAP

• A collection of results from the ground-based BAO 
experiments will look something like the left panel. 
Don’t you want to be the right one?

Hinshaw et al. (2003)



Japan’s Space BAO Mission?
• USA (>2017)

• JDEM AO, Spring 2008

• SNAP (SN1a+lensing) vs ADEPT (BAO) vs CIP 
(BAO) vs ...

• Europe (>2015)

• Candidate missions for the Cosmic Vision selected

• DUNE (SN1a+lensing) vs SPACE (BAO) vs ...

• Intense internal competitions in USA&EU. Can Japan 
sneak in while the others are “killing each other?”



Summary

• Where are we now?

• The ability of BAO for constraining DE has been 
demonstrated by the 2dFGRS and SDSS data.

• Theory is improving. The PT approach has been 
shown to be very promising.



Summary

• What needs to be done?

• Understand matter clustering at z~1.

• Important for surveys at z<2.

• Understand the galaxy bispectrum using PT.

• Important for improving determinations of bias.

• Understand redshift space distortion. [Challenge!] 

• Important for measuring H(z).



Outlook

• Where are we going?

• Many ground-based BAO experiments are being 
planned and developed. 

• Why stop at the ground-based experiments?

• Why not go to space?

• Can Japan’s cosmology compete?

• Does Japan’s cosmology want to be competitive?


