

What WMAP taught us about inflation, and what to expect from Planck

Eiichiro Komatsu (Texas Cosmology Center, UT Austin) Aspects of Inflation, UT-TAMU Workshop, April 8, 2011

How Do We Test Inflation?

- How can we answer a simple question like this:
 - "How were primordial fluctuations generated?"

Stretching Micro to Macro H^{-1} = Hubble Size Quantum fluctuations on microscopic scales **IFLATION!** δω 3 Quantum fluctuations cease to be quantum, and become observable

Power Spectrum

- A very successful explanation (Mukhanov & Chibisov; Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner) is:
 - Primordial fluctuations were generated by quantum fluctuations of the scalar field that drove inflation.
 - The prediction: a nearly scale-invariant power spectrum in the curvature perturbation, $\zeta = -(Hdt/d\phi)\delta\phi$
 - $P_{\zeta}(k) = \langle |\zeta_k|^2 \rangle = A/k^{4-ns} \sim A/k^3$
 - where $n_s \sim 1$ and A is a normalization.

Inflation Predicts:

Inflation may do this

...or this

WMAP 7-year Measurement (Komatsu et al. 2011)

After 9 years of observations... WMAP taught us:

 All of the basic predictions of single-field and slow-roll inflation models are consistent with the data

• But, not all models are consistent (i.e., $\lambda \phi^4$ is out unless you introduce a non-minimal coupling)

Testing Single-field by Adiabaticity

• Within the context of single-field inflation, all the matter and radiation originated from a single field, and thus there is a particular relation (adiabatic relation) between the perturbations in matter and photons:

$$\mathcal{S}_{c,\gamma} \equiv \frac{\delta \rho_c}{\rho_c} - \frac{\delta \rho_c}{\rho_c}$$

The data are consistent with S=0:

 $\frac{|\delta\rho_c/\rho_c - 3\delta\rho_{\gamma}|}{\frac{1}{2}[\delta\rho_c/\rho_c + 3\delta\rho_{\gamma}]}$

$$\frac{3\delta\rho_{\gamma}}{4\rho_{\gamma}} = 0$$

$$\frac{|4\rho_{\gamma})|}{(4\rho_{\gamma})|} < 0.09 (95\% \text{ CL})$$

Inflation looks good

 Joint constraint on the primordial tilt, n_s, and the tensor-to-scalar ratio, r.

r < 0.24 (95%CL; WMAP7+BAO+H₀)

Gravitational waves are coming toward you...What do you do? • Gravitational waves stretch space, causing particles to move.

Two Polarization States of GW

 This is great - this will automatically generate quadrupolar temperature anisotropy around electrons!

• "X" Mode

From GW to CMB Polarization

Electron

From GW to CMB Polarization

From GW to CMB Polarization

"Tensor-to-scalar Ratio," r $2\langle |h_{\mathbf{k}}^{+}|^{2} + |h_{\mathbf{k}}^{\times}|^{2} \rangle$ $\langle | \mathbf{L}_{\mathbf{k}} |^2 \rangle$ In terms of the slow-roll parameter:

r = 168

where $\epsilon = -(dH/dt)/H^2 = 4\pi G (d\phi/dt)^2/H^2 \approx (16\pi G)^{-1} (dV/d\phi)^2/V^2$

Polarization Power Spectrum

 No detection of polarization from gravitational waves (B-mode polarization) yet.

However

- We cannot say, just yet, that we have definite evidence for inflation.
- Can we ever prove, or disprove, inflation?

Planck may:

- Prove inflation by detecting the effect of primordial gravitational waves on polarization of the cosmic microwave background (i.e., detection of r)
- Rule out single-field inflation by detecting a particular form of the 3-point function called the "local form" (i.e., detection of f_{NL}^{local})

Challenge the inflation paradigm by detecting a violation of inequality that should be satisfied between the local-form 3-point and 4-point functions

And

- Typical "inflation data review" talks used to end here, but we now have exciting new tools: non-Gaussianity
- To characterize a departure of primordial fluctuations from a Gaussian distribution, we use the 3-point function (bispectrum) and 4-point function (trispectrum)

(Don't worry if you don't understand what I am talking about here: I will explain it later.)

> The current limits from WMAP 7-year are consistent with single-field or multifield models.

• So, let's play around with the future.

3-point amplitude

 No detection of anything (f_{NL} or T_{NL}) after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).

- **f_{NL} is detected.** Single-field is gone.
- But, T_{NL} is also detected, in accordance with $T_{NL} > 0.5(6f_{NL}/5)^2$ expected from most multi-field models.

- f_{NL} is detected. Singlefield is gone.
- But, T_{NL} is not detected, or found to be negative, inconsistent with $T_{NL} > 0.5(6f_{NL}/5)^2$.
- Single-field <u>AND</u> most of multi-field models are gone.

Bispectrum

• Three-point function!

• $B_{\zeta}(k_1,k_2,k_3)$ = $\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle$ = (amplitude) x (2 π)³ $\delta(k_1 + k_2 + k_3)F(k_1, k_2, k_3)$ **Primordial fluctuation** "f_{NL}"

model-dependent function

MOST IMPORTANT

Probing Inflation (3-point Function)

- Inflation models predict that primordial fluctuations are very close to Gaussian.
 - In fact, ALL SINGLE-FIELD models predict the squeezedlimit 3-point function to have the amplitude of $f_{NL}=0.02$.
 - Detection of $f_{NL} > 1$ would rule out ALL single-field models!
- No detection of this form of 3-point function of primordial curvature perturbations. The 95% CL limit is:
 - $-10 < f_{NL} < 74$
 - The WMAP data are consistent with the prediction of simple single-field inflation models: $I - n_s \approx r \approx f_{NL}$

A Non-linear Correction to Temperature Anisotropy

- The CMB temperature anisotropy, $\Delta T/T$, is given by the curvature perturbation in the matter-dominated era, Φ .
 - One large scales (the Sachs-Wolfe limit), $\Delta T/T = -\Phi/3$.
- Add a non-linear correction to Φ :
 - $\Phi(\mathbf{x}) = \Phi_g(\mathbf{x}) + f_{NL}[\Phi_g(\mathbf{x})]^2$ (Komatsu & Spergel 2001)
 - f_{NL} was predicted to be small (~0.01) for slow-roll models (Salopek & Bond 1990; Gangui et al. 1994)

For the Schwarzschild metric, $\Phi = +GM/R$.

"Local Form" Br

 Φ is related to the primordial curvature perturbation, ζ , as $\Phi = (3/5)\zeta$.

• $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2$

• $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) = (6/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$ $[P_{\zeta}(k_1)P_{\zeta}(k_2) + P_{\zeta}(k_2)P_{\zeta}(k_3) + P_{\zeta}(k_3)P_{\zeta}(k_1)]$

f_{NL}: Shape of Triangle

- For a scale-invariant spectrum, $P_{\zeta}(k) = A/k^3$,
 - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (6A^2/5)f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$ $x [1/(k_1k_2)^3 + 1/(k_2k_3)^3 + 1/(k_3k_1)^3]$
- Let's order k_i such that $k_3 \le k_2 \le k_1$. For a given k_1 , one finds the largest bispectrum when the smallest k, i.e., k₃, is very small.
 - $B_{\zeta}(k_1,k_2,k_3)$ peaks when $k_3 << k_2 \sim k_1$
 - Therefore, the shape of f_{NL} bispectrum is the squeezed triangle! k₂ k₃ (Babich et al. 2004)

B_{ζ} in the Squeezed Limit

• In the squeezed limit, the f_{NL} bispectrum becomes: $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (12/5) f_{NL} \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models^{*}, the bispectrum in the squeezed limit is given by
 - $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \approx (|-n_s|) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
 - Therefore, all single-field models predict $f_{NL} \approx (5/12)(1-n_s)$.
 - With the current limit $n_s \sim 0.96$, f_{NL} is predicted to be ~ 0.02 .

* for which the single field is solely responsible for driving inflation and generating observed fluctuations.

Suppose that single-field models are ruled out. Now what?

- We just don't want to be thrown into multi-field landscape without any clues...
- What else can we use?
 - Four-point function!

Trispectrum: Next Frontier

- The local form bispectrum, $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) f_{NL}$ [(6/5)P_ζ(k₁)P_ζ(k₂)+cyc.]
- is equivalent to having the curvature perturbation in position space, in the form of:
 - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2$
- This can be extended to higher-order:
 - $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$

This term is probably too small to see, so I don't talk much about it.

Local Form Trispectrum

- For $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + (3/5)f_{NL}[\zeta_g(\mathbf{x})]^2 + (9/25)g_{NL}[\zeta_g(\mathbf{x})]^3$, we obtain the trispectrum:
 - $+P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{4}|))+cyc.]$

• $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) \{ g_{NL}[(54/25)P_{\zeta}(\mathbf{k}_1) \}$ $P_{\zeta}(k_2)P_{\zeta}(k_3)+cyc.] + (f_{NL})^2[(18/25)P_{\zeta}(k_1)P_{\zeta}(k_2)(P_{\zeta}(|k_1+k_3|))]$

(Slightly) Generalized Trispectrum • $T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) \{ g_{NL}[(54/25) \} \}$ $P_{\zeta}(k_1)P_{\zeta}(k_2)P_{\zeta}(k_3)+cyc.]+T_{NL}[P_{\zeta}(k_1)P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2)(P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2))P_{\zeta}(k_2$

 $|\mathbf{k}_1 + \mathbf{k}_3| + P_{\zeta}(|\mathbf{k}_1 + \mathbf{k}_4|) + cyc.]$

The local form consistency relation, T_{NL} = $(6/5)(f_{NL})^2$, may not be respected – additional test of multi-field inflation!

The δN Formalism Separated by more than H⁻¹

 The δN formalism (Starobinsky 1982; Salopek Expa & Bond 1990; Sasaki & N
 Stewart 1996) states that the curvature perturbation is equal to the difference in N=lna.

•
$$\zeta = \delta N = N_2 - N_1$$

• where $N = \int H dt$

Getting the familiar result

- Single-field example at the linear order:
 - $\zeta = \delta \{ \int Hdt \} = \delta \{ \int (H/\phi') d\phi \} \approx (H/\phi') \delta\phi$
 - Mukhanov & Chibisov; Guth & Pi; Hawking; Starobinsky; Bardeen, Steinhardt & Turner

Extending to non-linear, multi-field cases

- Schematically:

 - $f_{NL} \sim < \zeta^3 > / < \zeta^2 > 2$

- $\zeta = \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I} + \frac{1}{2} \sum_{I,I} \frac{\partial^{2} N}{\partial \phi_{I} \partial \phi_{J}} \delta \phi_{I} \delta \phi_{J} + \dots$
- (Lyth & Rodriguez 2005) • Calculating the bispectrum is then straightforward.

• $<\zeta^3>=<(|st)x(|st)x(2nd)>~<\delta\phi^4>\neq 0$

$$\frac{N_{,IJ}N_{,I}N_{,J}}{N_{,I}(N_{,I})^2]^2}$$

Extending to non-linear, multi-field cases

- (Lyth & Rodriguez 2005) • Calculating the trispectrum is also straightforward. Schematically:
 - $<\zeta^4>=<(|st)^2(2nd)^2>~<\delta\varphi^6>\neq 0$
 - $f_{NL} \sim < \zeta^4 > / < \zeta^2 > 3$
- $\tau_{\rm NL} = \frac{\sum_{IJK} N_{,IJ} N_{,J} N_{,IJ}}{[\sum_{I} (N_{I})^2]^3}$

 $\zeta = \sum_{I} \frac{\partial N}{\partial \phi_{I}} \delta \phi_{I} + \frac{1}{2} \sum_{I,I} \frac{\partial^{2} N}{\partial \phi_{I} \partial \phi_{J}} \delta \phi_{I} \delta \phi_{J} + \dots$

$$\frac{KN_{,K}}{[\sum_{I}(N_{,I})^{2}]^{3}} = \frac{\sum_{I}(\sum_{J}N_{,IJ}N_{,J})^{2}}{[\sum_{I}(N_{,I})^{2}]^{3}}$$
(4)

Now, stare at these.

Change the variable...

$$a_{I} = \frac{\sum_{J} N_{,IJ} N_{,J}}{[\sum_{J} (N_{,J})^{2}]^{3/2}}$$
$$b_{I} = \frac{N_{,I}}{[\sum_{J} (N_{,J})^{2}]^{1/2}}$$

$(6/5)f_{NL} = \sum a_{D}b_{I}$ $T_{NL} = (\sum_{a} a)^2 (\sum_{b} b)^2$

Then apply the Cauchy-Schwarz Inequality

 $\left(\sum_{I} a_{I}^{2}\right) \left(\sum_{I} b_{J}^{2}\right)$

Implies (Suyama & Yamaguchi 2008)

 $\tau_{\rm NL} \ge \left(\frac{6f_{\rm NL}^{\rm local}}{5}\right)^2$

How generic is this inequality?

$$\ge \left(\sum_I a_I b_I\right)^2$$

Be careful when 0=0

 The Suyama-Yamaguchi inequality does not always hold because the Cauchy-Schwarz inequality can be 0=0. For example:

$$\zeta = \frac{\partial N}{\partial \phi_1} \delta \phi_1 +$$

In this harmless two-field case, the Cauchy-Schwarz inequality becomes 0=0 (both f_{NL} and T_{NL} result from the second term).

We need more general results!

- $-\frac{1}{2}\frac{\partial^2 N}{\partial \phi_2^2}\delta \phi_2^2$

Assumptions

- Scalar fields are responsible for generating fluctuations.
- Fluctuations are Gaussian and scale-invariant at the horizon crossing.
 - All (local-form) non-Gaussianity was generated outside the horizon by δN
- We truncate δN expansion at $\delta \phi^4$ (necessary for full calculations up to the "I-loop" order)

Starting point

- $\zeta(\mathbf{x},t) = N_a(t,t_*)\delta\varphi_*^a(\mathbf{x}) + \frac{1}{2}N_{ab}(t,t_*)\delta\varphi_*^a(\mathbf{x})\delta\varphi_*^b(\mathbf{x})$ $+ \frac{1}{3!} N_{abc} \delta \varphi_*^a \delta \varphi_*^b \delta \varphi_*^c + \frac{1}{4!} N_{abcd} \delta \varphi_*^a \delta \varphi_*^b \delta \varphi_*^c \delta \varphi_*^d$
 - Then, Fourier transform this and calculate the bispectrum and trispectrum...

Nao Sugiyama (a PhD student at Tohoku University in Sendai) did all the calculations!

Sugiyama, Komatsu & Futamase, arXiv:1101.3636 Here comes a simple result (I have copies of our paper, so please feel free to take one if you are interested in how we derived this.)

$$\tau_{\rm NL} + (2 \text{ loop}) >$$

• where (2 loop) denotes the following particular term:

$$\mathcal{P}_{*} \equiv (H_{*}/2\pi)^{2}$$

$$(2 \text{ loop}) = \frac{N_{ab}N_{abc}N_{cde}N_{de}\mathcal{P}_{*}^{2}\ln^{2}(k_{0}L)}{(N_{a}N_{a})^{3}(1+\mathcal{P}_{\text{loop}})^{3}}$$

$$\mathcal{P}_{\text{loop}} \equiv \frac{\text{Tr}(\tilde{N}^{2})}{\tilde{N}_{a}\tilde{N}_{a}}\mathcal{P}_{*}\ln(kL) \qquad 5$$

$$\frac{1}{2} \left(\frac{6}{5} f_{\rm NL} \right)^2$$

Now, ignore this 2-loop term:

$\tau_{\rm NL} > \frac{1}{2} \left(\frac{6}{5} f_{\rm NL}\right)^2$

• The effect of including all I-loop terms is to change the coefficient of Suyama-Yamaguchi inequality, $T_{NL} \ge (6f_{NL}/5)^2$

Recapping Assumptions

- Scalar fields are responsible for generating fluctuations.
- Fluctuations are Gaussian and scale-invariant at the horizon crossing.
 - All (local-form) non-Gaussianity was generated outside the horizon by δN
- We truncate δN expansion at $\delta \phi^4$ (necessary for full calculations up to the "I-loop" order)
- We ignore 2-loop (and higher) terms

- f_{NL} is detected. Singlefield is gone.
- But, T_{NL} is not detected, or found to be negative, inconsistent with $\tau_{\rm NL} > 0.5(6f_{\rm NL}/5)^2$.
- Single-field <u>AND</u> most of multi-field models are gone. 54