South Pole Telescope and Atacama Cosmology Telescope: Prospects for Inflation with Gaussianity Tests

Eiichiro Komatsu (Univ. of Texas, Austin) 213th AAS Meeting, Long Beach

Center for Cosmology, The University of Texas Austin

• The new Center for Cosmology, founded in January 2009, at the University of Texas at Austin!

Research Unit, Center for Cosmology Astronomy **Physics Volker Bromm Duane Dicus** Karl Gebhardt Jacques Distler Gary Hill Willy Fischler Eiichiro Komatsu(Director) Vadim Kaplunovsky Milos Milosavljevic Sonia Paban Paul Shapiro Steven Weinberg

Why Study Non-Gaussianity?

- Because a detection of f_{NL} has a best chance of **ruling out** the largest class of inflation models.
- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Bunch-Davies vacuum.

Detection of non-Gaussianity would be a major breakthrough in cosmology.

3

Tool: Bispectrum

- Bispectrum = Fourier Trans. of 3-pt Function
- The bispectrum <u>vanishes</u> for Gaussian fluctuations with random phases.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A sensitive tool for finding non-Gaussianity.

rans. of 3-pt Function

f_{NL} Generalized

• f_{NL} = the amplitude of bispectrum, which is

- = $\langle \Phi(k_1) \Phi(k_2) \Phi(k_3) \rangle = \int_{NL} (2\pi)^3 \delta^3(k_1 + k_2 + k_3) b(k_1, k_2, k_3)$
- where $\Phi(k)$ is the Fourier transform of the curvature perturbation, and $b(k_1,k_2,k_3)$ is a modeldependent function that defines the shape of triangles predicted by various models.

Two fni's

There are more than two; I will come back to that later.

- Depending upon the shape of triangles, one can define various f_{NL}'s:
- "Local" form
 - which generates non-Gaussianity locally in position space via $\Phi(x) = \Phi_{gaus}(x) + f_{NL} \int [\Phi_{gaus}(x)]^2$
- "Equilateral" form <
 - space (e.g., k-inflation, DBI inflation)

which generates non-Gaussianity locally in momentum

Forms of b(k₁,k₂,k₃)

- Local form (Komatsu & Spergel 2001)
 - $b^{\text{local}}(k_1,k_2,k_3) = 2[P(k_1)P(k_2)+cyc.]$

- Equilateral form (Babich, Creminelli & Zaldarriaga 2004)
 - $b^{equilateral}(k_1,k_2,k_3) = 6\{-[P(k_1)P(k_2)+cyc.] 2[P(k_1)P(k_2)P(k_3)]^{2/3} + [P(k_1)^{1/3}P(k_2)^{2/3}P(k_3)+cyc.]\}$

What if f_{NL} is detected?

- A single field, canonical kinetic term, slow-roll, and/or Banch-Davies vacuum, must be modified.
- Local Multi-field (curvaton);

Preheating (e.g., Chambers & Rajantie 2008)

- **Equil.** Non-canonical kinetic term (k-inflation, DBI)
- Bump Temporary fast roll (features in potential) +Osci.
- **Folded** Departures from the Bunch-Davies vacuum
 - It will give us a lot of clues as to what the correct early universe models should look like. 8

...or, simply not inflation?

- It has been pointed out recently that New Ekpyrotic scenario generates $f_{NL}^{local} \sim 100$ generically
 - Creminelli & Senatore; Koyama et al.; Buchbinder et al.; Lehners & Steinhardt

Measurement

• Use everybody's favorite: χ^2 minimization.

- with respect to $A_i = (f_{NL}^{local}, f_{NL}^{equilateral}, b_{src})$
- B^{obs} is the observed bispectrum
- B⁽ⁱ⁾ is the theoretical template from various predictions

$$\sum_{i} A_{i} B_{l_{1}l_{2}l_{3}}^{(i)} \Big)^{2}$$

$$\sigma_{l_1 l_2 l_3}^2$$

Journal on f_{NL}

- $-3500 < f_{NL}^{local} < 2000 [COBE 4yr, I_{max}=20]$ Komatsu et al. (2002)
- $-58 < f_{NL}^{local} < 134 [WMAP lyr, l_{max}=265]$ Komatsu et al. (2003)
- $-54 < f_{NL}^{local} < 114 [WMAP 3yr, I_{max}=350]$ Spergel et al. (2007)
- $-9 < f_{NL}^{local} < ||| [WMAP 5yr, I_{max}=500]$ Komatsu et al. (2008)
- Equilateral

Local

- $-366 < f_{NL}^{equil} < 238 [WMAP | yr, |_{max} = 405]$ Creminelli et al. (2006)
- $-256 < f_{NL}^{equil} < 332 [WMAP 3yr, I_{max} = 475]$ Creminelli et al. (2007)
- -151 < f_{NL}^{equil} < 253 [WMAP 5yr, I_{max}=700] ¹¹ Komatsu et al. (2008)

Future Prospects

- Planck satellite (to be launched in April 2009)
 - $I-\sigma \operatorname{error}: \Delta f_{NL}^{local} = 4; \Delta f_{NL}^{equilateral} = 26$
 - C.f., WMAP5: $\Delta f_{NL}^{local} = 30; \Delta f_{NL}^{equilateral} = 100$
- Small-scale CMB (temperature) experiments
 - Vary f_{sky} & I_{max} (cosmic-variance-limited out to I_{max})
 - $\Delta f_{NL}^{local} \sim 15^* sqrt(0.1/f_{sky})^* (2000/I_{max})$
 - $\Delta f_{NL}^{equilateral} \sim I20^* sqrt(0.1/f_{sky})^* (2000/I_{max})$
- ACT: $f_{sky} \sim 0.025$ (1000 deg²); SPT: $f_{sky} \sim 0.1$ (4000 deg²)

Summary

- ACT, SPT would yield limits on f_{NL}^{local} & f_{NL}^{equilateral} that are comparable to WMAP5 (and WMAP9).
- A choice of I_{max} =2000 is reasonable, considering the foreground sources such as SZ effects and point sources.
- The definite limit is I_{max}=3000 because of lensing (Komatsu & Spergel 2001).
- Planck would yield much better limits.

Non-Gaussianity Has Not Been Discovered Yet, but...

- At 68% CL, we have $f_{NL}=51\pm30$ (positive 1.7 σ)
 - Shift from Yadav & Wandelt's 2.8σ "hint" (f_{NL}~80) from the 3-year data can be explained largely by adding more years of data, i.e., statistical fluctuation, and a new 5-year Galaxy mask that is 10% larger than the 3-year mask
- There is a room for improvement
 - More years of data (WMAP 9-year survey funded!)
 - Better statistical analysis (Smith & Zaldarriaga 2006)
 - IF (big if) $f_{NL}=50$, we would see it at 3σ in the 9-year data

14