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We continue to use Dj for
the gravitation wave

ds% = — exp(2P)dt* + a® exp(—2¥)

2

_ 2 lexp(D)]sjdx’ da’
=1 j=1
@ : Newton’s gravitational potential

J/ : Spatial scalar curvature perturbation

Dz’ j : Tensor metric perturbation [=gravitational waves]
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Are GWs from vacuum fluctuation
in spacetime, or from sources?

DDZ']‘ — —167TG7TG-W

T i = a27rm
e Homogeneous solution: “GWs from the vacuum fluctuation”

* We covered this on Day 1
* Inhomogeneous solution: “GWs from sources”

* Topic of today’s lecture



Which sources?

e Scalar, vector, tensor gdecomposition

e \When the unperturbed space is homogeneous and
isotropic, we can classify perturbations based on how
they transform under spatial rotation:

e Spin 0: Scalar 337’ —> gj E RZ ij
e Spin 1: Vector

e Spin 2: Tensor
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Which sources?

e Scalar, vector, tensor decomposition

e \When the unperturbed space is homogeneous and
isotropic, we can classify perturbations based on how
they transform under spatial rotation:
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Which sources?

e Scalar, vector, tensor decomposition

e \When the unperturbed space is homogeneous and
isotropic, we can classify perturbations based on how
they transform under spatial rotation:

3
' — x' = g R’
7=1

e Spin 0: Scalar h+ h. C
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* Spin 2: Tensor *0. g
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Which sources?

e Scalar, vector, tensor decomposition

e \When the unperturbed space is homogeneous and
isotropic, we can classify perturbations based on how
they transform under spatial rotation: | S
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Which sources?

e Scalar, vector, tensor decomposition

e \When the unperturbed space is homogeneous and
isotropic, we can classify perturbations based on how
they transform under spatial rotation:

3
b — Y = E Rg.xj
e Spin 0: Scalar j=1

(h_|_ T ihx)(X) — ( 4+ T iﬁx)(x’) X3

. spin 2 ~h, _oyX2
e Spin 2: Tensor *e. S
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Vector and Tensor Modes

. 2 degrees of

3 3

e Vector: Transverse g vt =0— E k'v' =0
i=1 i=1

e Tensor: Transverse and traceless

3 3
1=1 1=1

3
o 2 degrees of
> Dii=0
1=1




Lifshitz (1946); Bardeen (1980); Kodama & Sasaki (1984)

Scalar-Vector-Tensor
Decomposition Theorem

e At linear order, scalar, vector, and tensor components are
decoupled (different spins do not mix at linear order)

 That is to say, tensor modes cannot be sourced by
scalar or vector modes at linear order (and vice versa)

e Scalars and vectors can source tensor modes at non-
linear order (e.g., second order)



EoM of GW with source
a* Dz’j — —167TG

B \/1—_9 23: 23: aiu (\/__ggw ai)

u=0 r=0

g =-1, ¢” =0, g7 =a"*t)(6" - DY),
a’(t)(6;; + Dij),  V—g = a’(t)

| =

gdij



EoM of GW with source

&2

Using M, = (87G)~1/2

— /M) T Y

e This can be derived from variation of the action:

1
I = \/—gd4x(
0l
5gii ~Mv/=ga’
OW9h)

§M§1R + »Cscalar + Lvector + Ltensor)

(2nd and higher order terms)



Stress-energy Tensor

Using M, = (87G) /2 G
%4

e This can be derived from variation of the action:

1
I = V —gd4$ (§M§1R + Lscalar + Lvector + [ftensor)

0l 1
= — ~M?*v/—ga? D;; + (2nd and higher order terms)




Scalar Source



Real Scalar Field

1 , 0¢ 0¢
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* The second term (proportional to gi) disappears when
taking the traceless component, Tij

— Gij T/3 [T is the trace of Tj]



Real Scalar Field

1 0o O
Lo=—5D g &i ajv V(o)

This is second order! Because:

¢(t7 X) — ¢(t) + 5¢(t7 X)

* The second term (proportional to gj) disappears when

taking the traceless component, Tij — Gi; T/ 3[T is the trace of Tij]



Acquaviva et al. (2003); Baumann et al. (2007)

GW from second-order
scalar perturbations

= — —MZ3v/—gd? D;; + 1 and higher order terms)

5[2(I>('_')l(")j D — 209'0;® + AV 9,V + &' DO, D — ', ¥ — D'V, P + 30"V, V]

* Not necessarily inflationary source; the structure formation
in the Universe gives the guaranteed amount of GW from
second-order scalar perturbation



frequency = kc (Hz)
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Vector Source



Electro-magnetic Field

La=—=) Fu,F"
4 o g, QA 04,
oxt*  OxV
F.o=FE
Fio = B3
Fo3 = By

F31 = Bo

[up to a2 factors]



Electro-magnetic Field

4 o g, QA 04,
for 2Y =g Turner & Widrow (1988) Ozt Ox”
and 2° =com. coord. [0 —&, —E, —E, Fio = Ly,

Fio = Bs,
Fo3 = By,
F31 = By

[up to a2 factors]

i l.e., the form remains the same as in non-expanding space



Electro-magnetic Field

12t

K B T

Stress-energy Tensor o = Ei,
Fio = B3,

TZ] — - 23 — P21,
/=9 09 F31 = B

1 [up to a2 factors]
1% 1%
— E g,u F?l,quV_Zgij E }7,11,1/}7'u
A% A%



EM Stress-Energy Tensor

Fio = B,
TA — _2 5 _gﬁA F12 — BS)
Yo/—g  0gY Fys = By,
v 1 1) F31 = B

~ Z g'u Fi'quV - 192] Z FHVFM [up to a2 factors]

2% v
Check' Isotropic Pressure

1
Py ”TA E E+B-B
Zg + ) = 3pa



EM Stress-Energy Tensor

Fio = B,
TA — _2 5 _gﬁA F12 — BS)
Yo/—g  0gY Fys = By,
v 1 1) F31 = B

~ Z g'u Fi'quV - 192] Z FHVFM [up to a2 factors]

2% v
Traceless Component
1
A A 2
Lij — 396517 = —Ci (EiEj + B; Bj)
+595(E-E+B-B)




EM Stress-Energy Tensor
Fio = E;,
TA _ —2 0y/—9La Fio = Bs,
v \/jg 0gY Fo3 = By,

— atd F. F. This is second order because Ei and Bi cannot
g Lipltjv

have the mean values; otherwise the
% background space wouldn’t be isotropic

Traceless Component
1
A A 2
Lij — 396517 = —Ci (EiEj + B; B;)
+390(E-E+B-B)




“Magnetogenesis”
by quantum fluctuation
during inflation?

On Day 1, we learned that the equation of motion of
gravitational waves during inflation had a constant
(conserved) solution in the super-horizon limit

Can we do the same for electromagnetic fields? Then
perhaps we can generate the intergalactic magnetic fields
naturally also from inflation?



Recap: Tensor Mode

e On Day 1, we learned that the equation of motion of
gravitational waves during inflation had a constant
(conserved) solution in the super-horizon limit

e This was due to the time-dependent mass:

ug; 4+ [k* +m*(n)] ui; =0

uij(n, k) = a(n)Dij;(n, k) y dt = a(n)dn

// conformal time
a

m?() = - = —a®(2H* + H)




Recap: Tensor Mode

e On Day 1, we learned that the equation of motion of
gravitational waves during inflation had a constant
(conserved) solution in the super-horizon limit

e This was due to the time-dependent mass:

ug; 4+ [k* +m*(n)] ui; =0

e For k << m,

u;; < a(n) — D;; = constant



How about Vector Mode?

e What happens to electromagnetic (EM) fields? Can we
generate the super-horizon EM field during inflation?

e The answer is no in the Standard Model of elementary
particles and fields, and no for the fundamental reason



(Massless) Vector Mode

e The equation of motion for Ai(n,k):

// 2
e EM fields decay as a—=:
E=—-a°A" xa 2,
B=0d4%VxA xag?

e The EoM of Ai has no time-dependent mass term due to
the expansion of the Universe!!

* The massless vector field does not feel the expansion
of the Universe. How come?



Conformal Invariance

It turns out that the electromagnetic action
R V—gd* F,, F*
JIA%

Is “conformally invariant”, in the sense that it remains
unchanged under the so-called “conformal transformation”
of the metric

Juv = Juv = ng,uv



Conformal Invariance

It turns out that the electromagnetic action
R V—gd* F,, F*
JIA%

Is “conformally invariant”, in the sense that it remains
unchanged under the so-called “conformal transformation”
of the metric

Juv = Juv = ng,uv

V=9 —=—3=0—g




Conformal Invariance

e |t turns out that the electromagnetic action
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Conformal Invariance

It turns out that the electromagnetic action

Is “conformally invariant”, in the sense that it remains
unchanged under the so-called “conformal transformation’
of the metric

~ e Y
Guv —7 Guv = () Juv
Thus,\/ —( Z FMVF’uyremains unchanged!
v



Conformal Invariance

e |t turns out that the electromagnetic action

* This means that we can “undo” the expansion of the
Universe and yet the EM field does not feel it!

~ L —9 L
Juv —7 Guv = @ " Guv = Nuv
Nuv = diag(—1,1,1,1)

ds® = a*(—dn* + dx*) — —dn* + dx°



Therefore:

e Scalar field: Super-horizon modes are amplified during
inflation and yield seeds for the cosmic structure
(colloquium last week)

 Tensor field: Super-horizon modes are amplified during
inflation and yield a background of stochastic

gravitational waves (Day1) and B-mode polarisation of the
CMB (Day 2)

 Electromagnetic field:



More general result

e One can show that the action is conformally invariant
when the derived stress-energy tensor is traceless:

Z 9" T =0
737

* This is certainly the case for the electromagnetic field:



More general result

e More generally, the stress energy tensor of a perfect fluid is

Ty = Pgu + (P + p)uuu,,, Zg“”uuuv — 1]
782

. L
e The trace is g'“ T,uu — 3P — 0
"

* Thus, the trace vanishes for any relativistic perfect
fluids satisfying P=p/3!



Side Note: Vanishing time-dependent
mass during the radiation era

e The time-dependent mass for the equation of
motion of gravitational waves vanishes during the
radiation era: a(n) ~ n

//

k? + 7p%(1)

uij:()

The GW mode function does not “feel” the expansion of
the Universe (except redshifts) during the radiation era

uij (1, k) = a(n)Dij(n, k) g dt = a(n)dn

= 0, for a(n) xn

VRN

conformal time



Turner & Widrow (1988)

Breaking of
Conformal Invariance

PHYSICAL REVIEW D VOLUME 37, NUMBER 10 15 MAY 1988

Inflation-produced, large-scale magnetic fields

Michael S. Turner and Lawrence M. Widrow

e Add terms to break conformal invariance:

B. R A% terms C. RF*? terms

We now consider the coupling of gravitational and

Consider the Lagrangian . ‘ :
electromagnetic fields through terms in the Lagrangian of

[ = _%F“ FrY_ ER 42_Sp AFAY the form RF? The most general Lagrangian containing
v p) 2 W such terms can be written
Both can generate super-horizon L=—3F, F*+Lg (2.20)
scale vector fields. Though they are 1 ) .
no longer considered as a mechanism Lg=-— Z;g(bRF wF* +cR, FFF¥ +dR ., F*F™) ,
to produce sufficient magnetic fields, ¢
the basic idea is there. What do they (2.21)

do to the gravitational waves?



Turner & Widrow (1988)

Breaking of
Conformal Invariance

PHYSICAL REVIER™ 'Next consider axion electrodynamics. For energies 15 MAY 1988
well below the Peccei-Quinn symmetry-breaking scale f,,
the effective Lagrangian for axion electrodynamics is
L=—10,00'60—LF, F*+g,0F, F*"| (3.7)
* Add tel where g, 1s a coupling constant of the order a, and the
vacuum angle 6=¢,/f, (¢, =axion field). The equations
of motion are
Consider the La _ 19 a’E+VXxXB=g,(6B+VOXE), (3.8) J| gravitational and
a’ oy the Lagrangian of
‘L —_— lF VF“ angian contammg
il 4B+ VXE=0, (3.9)
Both can g a- 2.20)
scale vector 6+226+k%0+g,a’E-B=0 . (3.10)
no longer con a Sa +dR 1 F*FY)

to produce sutticient magnetic tields,
the basic idea is there. What do they (2.21)
do to the gravitational waves?



Turner & Widrow (1988)

Chern-Simons Term

the effective Lagrangian for axion electrodynamics is

euu@
FHv —

2.5
L=—13,00"0—LF, F* +{g,0F , F ), R

. . Chern-Simons term
where g, 1s a coupling constant of the order a, and the

vacuum angle 86=¢,/f, (¢, =axion field).

Z FM,/F“V — B B-E- E) Parity Even

Z FWFW — 4B - E Parity Odd

* The axion field, 9, is a “pseudo scalar”, which is parity odd;
thus, the last term in EQ.3.7 Is parity even as a whole.



Anber & Sorbo (2010)

New Equation of Motion for
the Vector Mode

the effective Lagrangian for axion electrodynamics is

L=—13,00'0—1F, F* g, 0F, F"|, (3.7)

Chern-Simons term

AL+ | k2| £ oS Ap =0

A 29&9
k New, helicity-dependent term, with £ =

Al :iAQ H —c0o<n<0
e Axr =
N\ V2

X' ATA%0) o A+ is the mode function of each helicity state

, during inflation




Comparison to EoM of GW

Gravitational Wave (From Day 1)

a” p
G ] =0, wt =L o2

with A = -2, +2 (spin 2)

This minus sign
was the key

1kg46)

1
(—o0 < n <0)

Vector Field

Y+ [+ m5 (k)] Ay =0, m% =Q

with A = -1, +1 (spin 1)

e Therefore, for k << |ma|, one of the helicities, for which A(d6/dt) > 0,
Is amplified relative to the other! The vector field becomes “chiral”



(*) The exact solution can be given Anber & Sorbo (2010)
in the form of a “Whittaker function”

Large-scale Solution

Ay (kﬂ 2k§> A, =0
)
For ¢ >0, 8_15 < —kn < 2£0),

1 RN
AL~ Ton (2§aH> exp (— 2\/2§k/aH)

e Exponential dependence on §!



Helicity decomposition of

GW
D;; = 16nG(E;E; + B;B,; )TT
iy e 0
Dij=| hx —hy 0
0 0 0 h h
h h — 1
D; = +:;§ < DR:h+\/§ZhX

Left-handed: Helicity -2  Right-handed: Helicity +2



Sorbo (2011); Barnaby, Namba & Peloso (2011)

Power Spectrum of GW

L — ; R —
V2 V2
Left-handed: Helicity -2 Right-handed: Helicity +2

K (|Dg|?) 4 (H\" H? e*n¢
( 5‘ ) _ . (_) @\——8.6 x 107" — - -
27T Mpl 27T - Vacuum contribution pl f -

— (From Day 1) 7
k3(|D; |2 4 [ H\? ®/ H2 eAé
D) _ 4 (—) +1.8x 1079 C

27T ]\4p1 27T

* The above is for d6/dt > 0 (hence £>0). Chiral gravitational waves!



Sorbo (2011); Barnaby, Namba & Peloso (2011)

Power Spectrum of GW

L — ; R —
V2 V2
Left-handed: Helicity -2 Right-handed: Helicity +2

k*(|Dr|*y 4 (H . 1486 x 107 H? 419
Q72 B Mgl s | Mgl £o

k3(| Dy |2 4 [/ H\?> H? i€
\Drl”) ( ) 1+ 1.8x 10791 °¢

Q72 B Mgl 2t lel £o _

. Ifé(hence &) increases in time (axion speeds up), we will have a rising
spectrum of GW; completely new phenomenology!



Theoretical energy density

Spectrum of GW today

0.01 F | | _
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Theoretical energy der . LISA sensitivitv/
Spectrum of |
T L |/
] ¥ i
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New Phenomenology

 Axion-U(1) gauge field
e Vacuum Contribution Sourced Contribution
e Scale-invariant e Non-scale-invariant
e (Gaussian e Non-Gaussian
* No chirality e Chiral
* No circular polarisation e GW is circularly polarised
in GW
e TB/EB correlations do
e No TB/EB correlation in not vanish
CMB




Concluding Message
CLQDDZ’]‘ — —167TGTGW

* Do not take it for granted if someone told youthat'- o
detection of the primordial gravitational waves would be
a signature of “quantum gravity”!

e Only the homogeneous solution corresponds to the
vacuum tensor metric perturbation. There is no a priori
reason to neglect an inhomogeneous solution!

e Contrary, we have several examples in which detectable
GWSs are generated by sources [e.g., U(1) and SU(2)
gauge fields]



Appendix:
Linearly sourcing GW by
SU(2) Gauge Field



Challenge for vector-sourced
GW on CMB scales

* Can we generate GW on CMB scales (~10-18 Hz) by the
vector field and a Chern-Simons coupling?

* The answer is “not easy’, because It also creates
the scalar perturbation that is too non-Gaussian

* Not only does the second-order vector perturbation
generate non-Gaussian GW, but it also generates the
non-Gaussian scalar perturbation, which is not seen

on the CMB scale



Anber & Sorbo (2010); Barnaby & Peloso (2010)

Scalar perturbation from the
second-order vector field

1 8%

_ _l 2 _ B /107

4 OF" F,,

The equation of motion (Euler-Lagrange equation) for ¢ is

oV

— N pwp - "E.B
0= 95 ~ap 2 = BB

* The scalar field perturbation is sourced non-linearly by
the vector field -> Highly non-Gaussian contribution!



What went wrong?

To extract the

* The vector mode could not source the tensor mode at ransverse
linear order in homogeneous and isotropic background, and traceless
componen
as Ei and Bi cannot take the mean values

e |sotropy is broken otherwise

* The same non-linear source generates the scalar
perturbation that is too non-Gaussian to be consistent
with CMB data

e Can we find a field which can source the tensor mode
linearly?



Maleknejad & Sheikh-Jabbari (2011, 2013); Adshead & Wyman (2012)

A Solution: U(1) -> SU(2)

3 a
o
SU(2) gauge field: A M Z AZ 7
a=1

.. 1 (01 o (0 —1 s (1 0
Paullmatrlces.a—(1 O>’ =15 o ) 9=\ 0 1



Maleknejad & Sheikh-Jabbari (2011, 2013)

Remarkable Discovery

e The SU(2) gauge field has a solution, in which Aa,
establishes a homogeneous and isotropic mean value Q(t):

A% = a()Q(1)5¢

e You can picture this configuration by aligning a=1 with the
X-axis, a=2 with the y-axis, and a=3 with the z-axis:

x3

* This configuration is stable against
a perturbation, and it is in fact the
attractor solution for fairly generic
initial conditions.

Maleknejad & Erfani (2014);
Wolfson, Maleknejad & Komatsu (2020)




Maleknejad & Sheikh-Jabbari (2011, 2013)

Remarkable Discovery

e The SU(2) gauge field has a solution, in which Aa,
establishes a homogeneous and isotropic mean value Q(t):

A% = a()Q(1)5¢

e You can picture this configuration by aligning a=1 with the
X-axis, a=2 with the y-axis, and a=3 with the z-axis:

Fy = a*E;, i0 = — (aQ)'07,
U(1) 7., -u8, * 2 = 940°Q°%5, SY(2)
[EM] Fy3 = a”By, 55 = 940" Q7Y

F31 = a° By ¢ = gaa”Q° 05



Stress-energy Tensor

3
SU(Q) v a 1a v
Zg,u ZFZMFJV - W
ur a=1

This term disappears in the

_ traceless component
Perturbation:

5TZS]U(2) Zguuz Fa 5Fa) (5Fa,)_ }‘|‘ng( )

* The perturbed stress energy tensor is linear in the vector
perturbation!



Maleknejad & Sheikh-Jabbari (2011, 2013)

Tensor Mode in the SU(2)
Gauge Field

* When expanded around the homogeneous and isotropic
solution, the perturbation of the SU(2) gauge field
contains scalar, vector, and tensor modes:

A = (aQ))o; + scalar 4+ vector + t,;

« symmetric
 transverse
 traceless




Maleknejad & Sheikh-Jabbari (2011, 2013)

Tensor Mode in the SU(2)
Gauge Field

* When expanded around the homogeneous and isotropic
solution, the perturbation of the SU(2) gauge field
contains scalar, vector, and tensor modes:

Af = (aQ)o;" + scalar + vector + t4;
S s
a (dtQ ) t;j +294Q° {94Qat;; racaloss

]. iaata° . ._
5 Zeb &Bg S(R=) }

L ab _

sToU(2) _
i




Maleknejad & Sheikh-Jabbari (2011, 2013)

Helicity Decomposition

For tensor modes going in ks direction: t_|_ + 1t
X

t_|_ T« 0 tr, = \/5 helicity -2
A B L, — it
0 0 0/’ tp = X helicity +2

V2
2 d(aQ) ,,

5T]§U(2) — 0 i tL QQAQQ (gAQatL k‘gtL)
2 d(al)
5T}S{U(2) = . (dt )t}{ ZgAQQ (gAQatR — kgtR)

* The perturbed stress energy tensor is linear in t_R!



Maleknejad & Sheikh-Jabbari (2011, 2013)

Helicity Decomposition

For tensor modes going in ks direction: t_|_ + 1t
X

t_|_ T« 0 tr, = \/5 helicity -2
A B L, — it
0 0 0/’ tp = X helicity +2

V2
d
i (;‘f)tg 204@* (94Qats +Er)

Using symmetry, this result is valid for all ki=k k

2 d(a
6Ty = - (dtQ)t}z 294Q7% (9aQatr —@R)

o1y =

* The perturbed stress energy tensor is linear in t_R!



Adshead, Martinec & Wyman (2013); Dimastrogiovanni & Peloso (2013)
Maleknejad, Sheikh-Jabbari & Soda (2013)

tL.r: Equations of Motion

|k f (ot + (—kn)(mo + )| t, = O(Dy)

N e = (o€ —hn)mq +8) | tr = O(D)

—o0 <N <0 mq = gQ/H
. §=Xp/(2fH)

e During inflation, &~ mg + mg

[mq ~ a few, for successful phenomenology of this model]

* For &0, the right-handed mode is amplified for
V2(=1+vV2)mg < —kn < V2(1 + vV2)mo
= 0.6mg < —kn < 3.6mq



Dimastrogiovanni, Fasiello & Fujita (2016)

Sourced GW

super-horizon < > sub-horizon

1000}
100|

10F s
' -V (1) tr is amplified
1 - just before horizon

i crossing
0.100¢ :

’ [ r/a :
001 O / \ (3) tr decays on

- super-horizon scales

107 10~° 0.001 0.100° 10 1000
—kn



Maleknejad (2016); Dimastrogiovanni, Fasiello & Fujita (2016);
Maleknejad & Komatsu (2019)

Power Spectrum of GW
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* The above is for d¢/dt > 0 (hence £>0). Chiral gravitational waves!



Maleknejad (2016); Dimastrogiovanni, Fasiello & Fujita (2016);
Maleknejad & Komatsu (2019)

Power Spectrum of GW
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* Time dependence of Eé~maq+maq1 results in various non-scale-invariant

power spectrum shapes



How about scalar modes?

The scalar mode is not amplified for mqg > v/2

Dimastrogiovanni & Peloso (2013)

Therefore, the picture is:

e The scalar (curvature) perturbation is given by the
vacuum fluctuation (nearly scale invariant and
Gaussian), consistent with the CMB data (colloquium

ast week

 The tensor perturbation (GW) is given by the sourced
contribution



Dimastrogiovanni & Peloso (2013); Adshead, Martinec & Wyman (2013);
Maleknejad, Sheikh-Jabbari & Soda (2013)

Phenomenology, and more reading

* Non-scale invariant spectrum

 See Fujita, Sfakianakis & Shiraishi (2019) for various
power spectrum shapes

e Non-Gaussian

* |tis linearly sourced by tr, but tr itself is highly non-
Gaussian because of self-interaction. See Agrawal,
Fujita & Komatsu (2018a,b)

* Chiral

e Circular polarisation of GW and TB/EB correlation in
CMB as observable signatures. See Thorne et al. (2018)



Thorne, Fujita, Hazumi, Katayama, Komatsu & Shiraishi, PRD, 97, 043506 (2018)
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CMB Experimental Strategy
Commonly Assumed So Far

1. Detect CMB polarisation in multiple frequencies, to make
sure that it is from the CMB (i.e., Planck spectrum)

2. Check for scale invariance: Consistent with a scale
invariant spectrum?

e Yes => Announce discovery of the vacuum fluctuation
In spacetime

e No=>WTF?



New CMB Experimental
Strategy: New Standard!

1. Detect CMB polarisation in multiple frequencies, to make
sure that it is from the CMB (i.e., Planck spectrum)

2. Consistent with a scale invariant spectrum?
3. Consistent with Gaussianity?

4. TB/EB correlations consistent with zero?

e |f, and ONLY IF Yes to all => Announce discovery of the vacuum
fluctuation in spacetime



If not, you may have just

discovered new physics
during inflation!

2. Consistent with a scale invariant spectrum?
3. Consistent with Gaussianity?

4. TB/EB correlations consistent with zero?

e |f, and ONLY IF Yes to all => Announce discovery of the vacuum
fluctuation in spacetime



