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e Today: Vacuum Fluctuation
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* March 5: Polarisation of the cosmic microwave background
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e March 19: Sourced Contribution
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GW = Area-conserving distortion
of distances between two points



Distance between
two points In space

e Static (i.e., non-expanding) Euclidean space

e |n Cartesian coordinates = = (z,v, 2)

ds* = dx? + dy® + dz*



Distance between
two points In space

e Homogeneously expanding Euclidean space

* |n Cartesian comoving coordinates = = (z,v, 2)

ds* =\a*(t)(dz* + dy* + dz*)



Distance between
two points In space

e Homogeneously expanding Euclidean space

* In Cartesian comoving coordinates z = (z,v, 2)

3

ds® =a*(t) > Z 8 dx*da?

=1 7=

d;5 =1 fori=j

=0 otherwise



Distance between
two points In space

* Inhomogeneous curved space

* In Cartesian comoving coordinates z= = (z,y, 2)

ds® =a’ z Z (6;5 +H hij)dx'da?

1=—1 j “metric perturbation”
-> CURVED SPACE!



Four conditions

e (Gravitational waves shall be:

* Transverse: the direction of the oscillation of space is
perpendicular to the propagation direction [

3
e [his means E k’zhij = 3 conditions for hij;
1—=1
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propagation direction of GW ]{7
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* Area-conserving: the determinant of the distortion in

space remains unchanged
3

e This means that the trace vanishes: Z h;; =0

1=1 1 condition for h;j;



Four conditions

e (Gravitational waves shall be:

* Transverse: the direction of the oscillation of space is
perpendicular to the propagation direction [

3
e [his means Z k?’hw — O 3 conditions for hij;
i=1
* Area-conserving: the determinant of the distortion in
space remains unchanged

3
 This means that the trace vanishes: Z h,; =0

1=1 1 condition for h;j;

6 components of hijminus 4 conditions = 2 degrees of freedom



More precisely:

We should start with a space-time distance with a 4-by-4
metric tensor, guv [u,v=0,1,2,3]

* |t has 10 components:
3

3
ds; = Z Z gudxtdz”

u=0 =0

with

dz = (dt,dz")

Coordinate condition eliminates 4 degree of freedom (DoF)



More precisely:

* We should start with a space-time distance with a 4-by-4
metric tensor, g [H,v=0,1,2,3]

e |t has 10 components:

3 3
ds; = >: >:gwdaz“da:’/ with dxt = (dt, dg;i)
u=0 =0
3 3 3
= (=1 + hoo)dt* + al(t) Y _ hoidtda’ +a(t) Y > (85 + hij)da' da’
i=1 i=1 j=1

e Coordinate condition eliminates 4 degree of freedom (DoF)

* |eaving 6 DoF: This is where we started; in this lecture we
started with hoo=0 and hoi=0 (called “synchronous gauge”)



More precisely:

* We should start with a space-time distance with a 4-by-4
metric tensor, g [H,v=0,1,2,3]

e |t has 10 components:

3 3
ds; = >: >:gwdaz“d:v” with dzt = (dt, dx")

pu=0 r=0

3 3 3
— (=1 + hgo)dt® + a(t ho;ditdz + a?(t) Y > (8;: + h;:)dx'dx?
-t fd J J

6 DoF = 2 scalar, 2 vector,DoF

This is GW, which can be extracted by
Imposing transverse gnd traceless conditions

* |eaving 6 DoF: This is where we starteq; in this lecture we
started with hoo=0 and hoi=0 (called “synchronous gauge”)




+ and X modes

e |fthe GW is propagating in the z (i=3) direction, we can write

h_|_ hx O
0 0 0

Y 4




propagation direction of GW k Z

h.=cos(kz)

NCNON




Equation of motion (EoM)

 Writing Einstein’s gravitational field equation with

ds® =a’ Z 2 (6;5 + hij)dz'da?
1—=1 9=

3 3
e and Z kzhw = O, Z hu = O; We obtain
=1 =1

aQth — —167TGT  stress-energy

7/] source of GW



EoM in a non-expanding space

a2|:|hz-j — —167TGT  stress-energy

,Lj source of GW

8 174
=z TV ZZ”M axu axv

u=0 =0




EoM In an expanding Universe

alejhzj — _167TGT‘G‘st‘re/E£energy

,Lj source of GW

V=9 OxH IT v
u=0 r=0
with g0 = —1, ¢ =0, ¢ =a*t)0", +/—g=a")
N




EoM In an expanding Universe

alejhzj — _167TGT‘G‘st‘re/E£energy

,Lj source of GW
3 3

= =YY o (v )

u=0 =0




EoM In an expanding Universe

alejhzj — _167TGT‘G‘st‘re/E£energy

,Lj source of GW
3 3

= =YY o (v )

u=0 =0




EoM In an expanding Universe

alejhzj — _167TGT‘G‘st‘re/E£energy

,Lj source of GW
3 3

= =YY o (v )

u=0 =0




EoM In an expanding Universe

a2|:|hz-j — —167TGT  stress-energy

,Lj source of GW
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EoM In an expanding Universe

a2|:|h,ij — —167TGTGWgy

Z] source of GW

0 a0 k2
= 3 Y - o e

atz & at G We define:

3aj: k? G

hij + . hz’j | 72 hij — 167TG7Tij

expansion of the Universe affects hj;




Let’s solve EoM

.. 3al. k2 AT T
i . hij - 3 hij = 167G

expansion of the Universe affects hj;

e Two tricks:

(1) Define “conformal time”

0= [ <5

and use this instead of time derivatives 8 (9



Let’s solve EoM

17 J

2
0!

Primes =

e Two tricks: ] . .
conformal time derivatives

(1) Define “conformal time”

and use this instead of time derivatives a (9



Let’s solve EoM

2
hélg | ahé? -+ kzhij — 167TGCL27T-G-W

¥,

e Two tricks:

(2) Multiply h;; by the scale factor and define

uz-j — Clhz'j



Let’s solve EoM

2 a” 3
+ | & u;; = 16mGa m

a

e Two tricks:

(2) Multiply h;; by the scale factor and define

uz-j — Clhz'j

GW
v]



Let’s solve EoM

GW
oy

2 |
144 (77) p— effect of the expansion

of the Universe

We obtain a harmonic oscillator with a time-dependent mass term!

] GW
u;/y _kQ mQ(n)_ — 167Ga’m by




Propagation of GW
In vacuum: Two regimes

w; + k2 4+ m*(n)

* Two regimes:

1. Short wavelength (k >> |m|)

uf,;j:()

* Uj ~ exp(ikn) => hj ~ a-lexp(ikn) [decaying]

2. Long wavelength (k << |m|)

* Uij ~ a => hjj ~ constant



Meaning of m?2

/]
m?(n) = —— = —a?(2H? + H)
a Hubble’s expansicin rate
o a
a

 The inverse of the expansion rate, (aH)-1, gives an estimate of
the (comoving) size of the observable Universe, or “horizon”

e So, k << |m| is the “super-horizon” mode, and k >> |m| is
the “sub-horizon” mode



Horizon Distance

* Horizon = the physical distance traveled by a photon

 The (unperturbed) photon path in the radial direction is
given by ds? = —dt® + a2(t)dr® = 0

* |ntegrating it, we obtain the physical distance traveled
by a photon, dhorizon, s
t dt/

dhorizon = a(l)r = a(?) a®)

 Hubble length is given by H-1, which is on the same order of
magnitude as dnorizon. Comoving Hubble length is (aH)-1,
which is on the same order of magnitude as dhorizon/a(t)=r




GW “entering the horizon”

 This is a tricky concept, but it is important

e Suppose that GWs exist at all wavelengths

* Let’s not yet ask the origin of these “super-horizon
GW?”, but assume their existence

* As the Universe expands, the horizon size grows and we
can see longer and longer wavelengths

 Fluctuations “entering the horizon”
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GW Evolution: Summary

e Super-horizon scales [k << aH]
* The amplitude of GW is conserved (i.e., hij = constant)
e Sub-horizon scales [k >> aH]

* The amplitude of GW decays (i.e., hij ~ 1/a)

Therefore, the long-wavelength

GW preserves the initial condition:
the beginning of the Universe!




Source of GW
In the early Universe?

a//

u;; + | k% — — ) u;; = 167Ga’m GW

a 4/7

 Was there any source of GW in the early Universe?

* Yes, in a sense that there are many papers on possible
sources in the literature

e See arecent review article by C. Caprini and D. Figueroa,
Classical and Quantum Gravity, 35, 163001 (2018),
arXiv:1801.04268



Quantum generation of GW
In the early Universe!

 But, even if there was no source, GW can emerge
quantum-mechanically! Grishchuk (1974); Starobinsky (1979)

* This is the subject of today’s lecture. We will talk about the
right hand side on March 19

* To see this, we need to quantise the left hand side of the
equation



Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation
Inflation! <
/ \

 Exponential expansion (inflation) stretches the wavelength
of quantum fluctuations to very large scales




Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

* Inflation is the aCCelerated, quasi-exponential

expansion. Thus, we must have

C A HZS( = = H<1
a“ g Bk

Actually, we rather need € << 1, to have a
sustained period of inflation. So H(t) is a
slowly-varying function of time



Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

* Inf

Cosmic Inflation

ation is the aCCelerated, quasi-exponential

expansion. Thus, we must have

H

H2

~ exp|H (t — o),

a .
"= H L H?’>(0 =P = <1
a
Therefore, o
= H - alt) = exp / dt H(t')
_J 1o

During inflation, a(t) grows
exponentially in time



a//

m?(n) = —— = —a®(2H” + K
GW from inflation
wy; + (K% — 2a°H?) u; = 0

 During inflation, the scale factor grows exponentially in time,

a(t) oc exp(Ht)

e |n conformal time, this means

a(n) = —(Hn)™" e —c<n<0



GW from inflation

2
2

 During inflation, the scale factor grows exponentially in time,

a(t) oc exp(Ht)

e |n conformal time, this means

a(n) = —(Hn)™" e —c<n<0



GW from inflation
2

/1 2
J 772
* The solution is
i sin(kn) cos(kn) . )
wi; = Ajj _cos(kn) — + B;; ko | Sm(kn)_

* How do we fix the integration constants, Aj and B;? We need QM!

 We find Ajand Bijj, such that the ujj coincides with the known
flat-space (Minkowski) results for the quantum fluctuation in
vacuum



Second-order Action

 The action that gives Einstein’s field equations is the so-
called “Einstein-Hilbert action”, given by the Ricci scalar R:

4 Mp1 — (87TG)_1/2
Iop = /\/ gd*x ( 1R> with
V=g =d°

 Expanding this to second-order in hjj, we obtain the action
that gives the equation of motion for hj:

(2) 30 Lo (Lio  (Vhi)®\ o (e he
IGR — /CZ d XL ZMpl <§h23 2a2 with h;; = ho>< g+ 8

1 Z 1. (Vhy)?
- 3 74 2 2
— /a d €XT §Mpl <§h)\ 20,2 >

A=+, X




Second-order Action

 The action that gives Einstein’s field equations is the so-
called “Einstein-Hilbert action”, given by the Ricci scalar R:

My = (87TG)_1/2
N

 Expanding this to second-order in hjj, we obtain the action
that gives the equation of motion for hj:

)2
12 - / T M2 (% 2 (Vhi;) ) - ( g)

4 202 0 0 0

- [ - (- S)

unwanted pre-factor A= X

1
IG'R — /\/—gd4$ (§M§1R> with




“Canonically-normalised”
mode function

5 1 1 (Vh;i)?
zg;_/ a>da M2< i~ 5 >

B G (e

unwanted pre-factor *=1 X

 Two tricks again:

* (1) Use the conformal time: a3d4aj‘ — a4d77d3$

My,
V2

* (2) Define: Uy = CLh)\




“Canonically-normalised”
mode function

(2) 34 Lio (1. (Vhij)2
I5h = /a 4’z - Mp <_hz’j 90,2

1 a’
/dndgx Z ( uh? — = VUA)Q | > u%\)

A=+, X

 Two tricks again:

* (1) Use the conformal time: a3d4aj‘ — a4d77d3$

My,
V2

This is the correct (“canonical’)
afh )\ normalisation!

* (2) Define: Uy =




GW from inflation
2

/1 2
J 772
* The solution is
i sin(kn) cos(kn) . )
wi; = Ajj _cos(kn) — + B;; ko | Sm(kn)_

* How do we fix the integration constants, Aj and B;? We need QM!

 We find Ajand Bijj, such that the ujj coincides with the known
flat-space (Minkowski) results for the quantum fluctuation in
vacuum



GW from inflation

//
U)\ —|—

e The solution is

U)\:A)\

* In the very short wavelength limit, kn->c, we want to
reproduce the quantum field theory result in the flat

_cos(kn)

kQ

2

]

sin(kn)

2

kn

(Minkowski) space, which is

Uy —

+ B

exp(—ikn)

U)\:O

V2k




GW from inflation

2
!/ 2
U -+ k 5 Uy — 0
7]
e The solution is
us = Ay |cos(kn) sin(kn) B, cos(kn) I
* i kn * kn
(2K)-172 -i(2k)72

* In the very short wavelength limit, kn->c, we want to
reproduce the quantum field theory result in the flat
(Minkowski) space, which is exp(—z’kn)

Uu >
A NGY:




GW from inflation

2
u’i—l—(kQ 2>u>\:0
]

e The solution is

This term dominates in the
super-horizon mode!
“Particle Production by Inflation”



GW from inflation

2
u/)(—|—</€2 2>u>\:0
]

e The super-horizon solution is




GW from inflation

2
u/)(—|—</€2 2>u>\:0

Ui
e The super-horizon solution is
7) .
Uy — e v
vV 2k3n

Since u), = —>ah, and a(n) = —(Hn)..



GW from inflation

2
u/)(—|—</€2 2>u>\:0
]

e The super-horizon solution is

1 H




GW from inflation

2
UK—F(/{Q 2)%)\:0
]

* The super-horizon solution is

The amplitude of GW on
super-horizon scale is proportional to H!



Quantum fluctuations during
Inflation are proportional to H

e THE KEY RESULT: The earlier the fluctuations are
generated, the more its wavelength is stretched, and thus the
bigger the angles they subtend in the sky.

* We can map H(t) by measuring fluctuations over a wide
range of wavelengths

 Earlier time -> Larger angular scales

e Late time -> Smaller angular scales
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GW variance per log(k)

) 8 [ H\"
ZWQZhwh )= ]\42 27T

e Variance per log(k) depends only on H; thus,

e |tis scale-invariant if H is constant during inflation; or

* |t is nearly scale-invariant if H changes slowly during inflation
* In general, H is a decreasing function of time; thus,

* The variance of GW is smaller at shorter wavelengths. This is the
key prediction of GW from the vacuum fluctuation during inflation



Energy DenS|ty of GW
paw (t :_M21Z ij ( X))

:—M21 Z h2

A=+, X

(1) * paw (t) o< a™*(t)

 During the radiation era,

Qaw (t) = paw (t)/ protal (t) = constant

Solution of EoM

hijOCCL

 During the matter era,
Qaw(t) = paw (1)/protar(t) = a™ (1)



Watanabe & EK (2006)

Theoretical energy density

Spectrum of GW today
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Watanabe & EK (2006)

Theoretical energy density

Spectrum of GW today

GW entered durlng
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Watanabe & EK (2006)

Theoretical energy density

—~ Spectrum of GW today
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Why k-2 ?

QGW (t()) — QGW (thorizon) a(thcrizon) during the matter era

a(t())

with

k = Cl(thorizon)H(thorizon)
x aa"3/?

X a 1/2 (thorizon)

e Therefore,

QGW (75()) X QGW (thorizom)k_2



Watanabe & EK (2006)

Theoretical energy density

—~ Spectrum of GW today
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Watanabe & EK (2006)

Theoretical energy density

Spectrum of GW today

/1 GW entered durlng
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Kolb & Turner, “The Early Universe”

Evolution of Sec. 3.3 & 3.4
Radiation Density

* You might have learned in the cosmology class that the

radiation density redshifts as —4
Pradiation X A

* This is true only when the radiation content (relativistic
degrees of freedom) does not change

e The correct formulae:

3

* Entropy conservation: § = sa” o g 8T3a3 = constant

 Then the radiation density redshifts as

4 —4/3 4
Pradiation X g*T X Jx{xs A



Watanabe & EK (2006)
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Watanabe & EK (2006)

Theoretical energy density

Spectrum of GW, toda

r PTA Interferometers
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AppendiX:
Scalar Perturbation



Inflationary Predictions

* Fluctuations we observe today in CMB and the matter
distribution originate from quantum fluctuations during
inflation

scalar
mode

Bardeen, Steinhardt&Turner
(1983)

* There should also be ultra long-wavelength

o0
Ij gravitational waves generated during inflation
e, Grishchuk (1974)
. . . Starobinsky (1979
tensor PRI RN . . insky (1979)
* » [ L

mode




We measure distortions In space

* A distance between two points in space
2 2 ' '
dl = a”(t)[1 4+ 2¢(x,1)][0;; + hij(x,1)|dx"dx’
e C: “curvature perturbation” (scalar mode)
e Perturbation to the determinant of the spatial metric

e h;j: “gravitational waves” (tensor mode)

e Perturbation that does not alter the determinant

Zhii:o



Second-order Action for hj;

 The action that gives Einstein’s field equations is the so-
called “Einstein-Hilbert action”, given by the Ricci scalar R:

4 Mp1 — (87TG)_1/2
Iop = /\/ gd*x ( 1R> with
V=g =d°

 Expanding this to second-order in hjj, we obtain the action
that gives the equation of motion for hj:

@ _ g Loz (Liz - (Vha)®\ (e
IGR — /CZ d XL ZMpl <§h23 2a2 with h;; = ho>< g+ 8

1 1. (Vhy)?
3 714 2 E , 2
— /a d €ZT §Mpl <§h)\ 20,2 >
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Second-order Action for C

 The action that gives Einstein’s field equations is the so-
called “Einstein-Hilbert action”, given by the Ricci scalar R:

4 Mp1 — (87TG)_1/2
Iop = /\/ gd x ( 1R> with
V=g =d*

 Expanding this to second-order in ¢, we obtain the action
that gives the equation of motion for C;

](GQI% _ / CL3d4ZL‘ 2€M§1 (lc 2 (VC)Q > Getting this result is not

9 9 CL2 as easy as it may look.
See the steps leading to
_ . Eq.(2.12) of Maldacena,
with H JHEP 0305 (2003) 013,
€ = <1 astro-ph/0210603




Second-order Action for C

 The action that gives Einstein’s field equations is the so-
called “Einstein-Hilbert action”, given by the Ricci scalar R:

4 Mp1 — (87TG)_1/2
Iop = /\/ gd x ( 1R> with
V=g =d*

 Expanding this to second-order in ¢, we obtain the action
that gives the equation of motion for C'

(2) 2 Getting this result is not
1 :13 2
GR 2 CL2 as easy as it may look.

unwanted pre- factor See the steps leading to

Eq.(2.12) of Maldacena,
with H JHEP 0305 (2003) 013,

€ = < 1] astro-ph/0210603




Canonically-normalised
mode function

1., (V)2
[((;2113:/456(5{:2 (252) )

unwanted pre-factor

1, 1 "
= /dndga: <§u’2— §(Vu)2 | Zaa u2>

 Two tricks again:

* (1) Use the conformal time: a3d4aj‘ — a4d77d333

e (2) Define: U — \/ QGMpICLC This is the correct (“canonical”)

normalisation!



The rest follows as before!

2
u"+<k2 2>u — 0
7]

e The super-horizon solution is




The rest follows as before!

2
u”+(/<:2 2>u — 0
7]

* The super-horizon solution is

The amplitude of C on
super-horizon scale is proportional to H/ /e !



Variance of C

2 _ d3k 2
() = [ 55 (<00
X 1H —ikn B Ark*dk  H?
C = \/4k3€Mp16 _/ (27)3 4k3€M§1

B / dk 1 (HY\°
B k 2€M§1 2T
* In general, H is a decreasing function of time; thus,

* The variance of C is smaller at shorter wavelengths.
This has been measured from the CMB data!

(Colloquium on March 5) Important milestone of
cosmology in 2012-2013



Variance of C

o= [ (d 5 (o

‘s H ik __L/°4wk2dk H?
\/4k3€Mpl (27)3 4k3€M§1

_/ﬂ:l H\"
B k 2€M§1 27

Z/ s (Pi097509) = [ Ajﬁl (Z)




Tensor-to-scalar Ratio

— — 10¢

Super famous result ot

vacuum fluctuation, which does not necessarily hold for
the sourced contribution! (the topic on March 19)




Tensor-to-scalar Ratio

thigh”) 4
I

€ = 773 < 1

I

€ << 1 is observationally
shown already

 We really want to find this! The current upper bound is
r<0.06 (95%CL)
BICEP2/Keck Array Collaboration (2018)



