Lecture notes:

https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html

Primordial Gravitational Waves from Inflation

Eiichiro Komatsu
[Max Planck Institute for Astrophysics]
University of Amsterdam
February 27, March 5, and 19, 2020

Plan

Today: Vacuum Fluctuation

$$\Box h_{ij} = 0$$

March 5: Polarisation of the cosmic microwave background

March 19: Sourced Contribution

$$\Box h_{ij} = -16\pi G\pi_{ij}^{GW}$$

GW = Area-conserving distortion of distances between two points

- Static (i.e., non-expanding) Euclidean space
 - In Cartesian coordinates x = (x, y, z)

$$ds^2 = dx^2 + dy^2 + dz^2$$

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2(t)(dx^2 + dy^2 + dz^2)$$
"scale factor"

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2(t) \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij} dx^i dx^j$$
"scale factor" $i=1$ $j=1$ δ_{ij} and δ_{ij} of the rwise δ_{ij} scale factor δ_{ij} of the rwise δ_{ij} and δ_{ij} of the rwise δ_{ij} scale factor δ_{ij} of the rwise δ_{ij}

- Inhomogeneous curved space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
"metric perturbation"

-> CURVED SPACE!

Four conditions

- Gravitational waves shall be:
 - **Transverse**: the direction of the oscillation of space is perpendicular to the propagation direction \vec{k}
 - ullet This means $\sum_{i=1}^{3} k^i h_{ij} = 0$ 3 conditions for $\mathbf{h}_{\mathbf{i}\mathbf{j}}$

propagation direction of GW

$h_{ij} \sim cos(kz)$

Four conditions

- Area-conserving: the determinant of the distortion in space remains unchanged
 - This means that the trace vanishes: $\sum h_{ii} = 0$

=1 1 condition for h_{ij}

Four conditions

- Gravitational waves shall be:
 - <u>Transverse</u>: the direction of the oscillation of space is perpendicular to the propagation direction \vec{k}
 - This means $\sum_{i=1}^{3} k^i h_{ij} = 0$ 3 conditions for h_{ij}
 - Area-conserving: the determinant of the distortion in space remains unchanged
 - This means that the trace vanishes: $\sum_{i=1}^{3} h_{ii} = 0$

More precisely:

- We should start with a space-time distance with a 4-by-4 metric tensor, g_{μν} [μ,ν=0,1,2,3]
 - It has 10 components:

$$ds_4^2 = \sum_{\mu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu$$
 with
$$dx^\mu = (dt, dx^i)$$

Coordinate condition eliminates 4 degree of freedom (DoF)

More precisely:

- We should start with a space-time distance with a 4-by-4 metric tensor, g_{μν} [μ,ν=0,1,2,3]
 - It has 10 components:

$$\begin{split} ds_4^2 &= \sum_{\mu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu & \text{ with } dx^\mu = (dt, dx^i) \\ &= (-1 + h_{00}) dt^2 + a(t) \sum_{i=0}^3 h_{0i} dt dx^i + a^2(t) \sum_{i=0}^3 \sum_{j=0}^3 (\delta_{ij} + h_{ij}) dx^i dx^j \end{split}$$

- Coordinate condition eliminates 4 degree of freedom (DoF)
 - leaving 6 DoF: This is where we started; in this lecture we started with h₀₀=0 and h_{0i}=0 (called "synchronous gauge")

More precisely:

- We should start with a space-time distance with a 4-by-4 metric tensor, $g_{\mu\nu}$ [$\mu,\nu=0,1,2,3$]
 - It has 10 components:

$$ds_4^2 = \sum_{\mu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu \qquad \text{with } dx^\mu = (dt, dx^i)$$

$$= (-1 + h_{00})dt^{2} + a(t)\sum_{i=1}^{3} h_{0i}dtdx^{i} + a^{2}(t)\sum_{i=1}^{3} \sum_{j=1}^{3} (\delta_{ij} + h_{ij})dx^{i}dx^{j}$$

6 DoF = 2 scalar, 2 vector, 2 tensor DoF

This is GW, which can be extracted by

 leaving 6 DoF: This is where we started; in this lecture we started with $h_{00}=0$ and $h_{0i}=0$ (called "synchronous gauge")

+ and x modes

If the GW is propagating in the z (i=3) direction, we can write

Equation of motion (EoM)

Writing Einstein's gravitational field equation with

$$ds^{2} = a^{2} \sum_{i=1}^{3} \sum_{j=1}^{3} (\delta_{ij} + h_{ij}) dx^{i} dx^{j}$$

• and $\sum_{i=1}^3 k^i h_{ij} = 0$, $\sum_{i=1}^3 h_{ii} = 0$; We obtain

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

EoM in a non-expanding space

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box = -\frac{\partial^2}{\partial t^2} + \nabla^2 = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta^{\mu\nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x^{\nu}}$$

with
$$\eta^{00}=-1,\quad \eta^{0i}=0,\quad \eta^{ij}=\delta^{ij}$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box \equiv \frac{1}{\sqrt{-g}} \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} g^{\mu\nu} \frac{\partial}{\partial x^{\nu}} \right)$$

with
$$g^{00}=-1, \quad g^{0i}=0, \quad g^{ij}=a^{-2}(t)\delta^{ij}, \quad \sqrt{-g}=a^3(t)$$

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} + \frac{1}{a^2}\nabla^2$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box \equiv \frac{1}{\sqrt{-g}} \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} g^{\mu\nu} \frac{\partial}{\partial x^{\nu}} \right)$$

with
$$g^{00}=-1, \quad g^{0i}=0, \quad g^{ij}=a^{-2}(t)\delta^{ij}, \quad \sqrt{-g}=a^3(t)$$

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} - \frac{k^2}{a^2} \text{ In Fourier space } \\ \nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$\nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box \equiv \frac{1}{\sqrt{-g}} \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} g^{\mu\nu} \frac{\partial}{\partial x^{\nu}} \right)$$

with
$$g^{00}=-1, \quad g^{0i}=0, \quad g^{ij}=a^{-2}(t)\delta^{ij}, \quad \sqrt{-g}=a^3(t)$$

k: comoving wavenumber

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} - \frac{k^2}{a^2} \text{ In Fourier space } \nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$\nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box \equiv \frac{1}{\sqrt{-g}} \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \frac{\partial}{\partial x^{\mu}} \left(\sqrt{-g} g^{\mu\nu} \frac{\partial}{\partial x^{\nu}} \right)$$

with
$$g^{00}=-1, \quad g^{0i}=0, \quad g^{ij}=a^{-2}(t)\delta^{ij}, \quad \sqrt{-g}=a^3(t)$$

k/a: physical wavenumber

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} - \frac{k^2}{a^2}$$
 In Fourier space
$$\nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$\nabla^2 e^{i\mathbf{k}\cdot\mathbf{x}} = -k^2 e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} - \frac{k^2}{a^2} \text{ In Fourier space}$$

$$T_{ij} = a^2 \pi_{ij}$$

$$\ddot{h}_{ij} + \frac{3\dot{a}}{a}\dot{h}_{ij} + \frac{k^2}{a^2}h_{ij} = 16\pi G \pi_{ij}^{GW}$$

$$a^2\Box h_{ij} = -16\pi G T_{ij}^{GW}_{\text{source of GW}}$$

$$\Box = -\frac{\partial^2}{\partial t^2} - 3\frac{\dot{a}}{a}\frac{\partial}{\partial t} - \frac{k^2}{a^2} \text{ In Fourier space}$$
 We

$$T_{ij} = a^2 \pi_{ij}$$

$$\ddot{h}_{ij}+rac{3\dot{a}}{a}\dot{h}_{ij}+rac{k^2}{a^2}h_{ij}=16\pi G\pi_{ij}^{GW}$$
 expansion of the Universe affects \mathbf{h}_{ij}

expansion of the Universe affects hii

$$\ddot{h}_{ij} + \frac{3\dot{a}}{a}\dot{h}_{ij} + \frac{k^2}{a^2}h_{ij} = 16\pi G\pi_{ij}^{GW}$$

expansion of the Universe affects hij

- Two tricks:
- (1) Define "conformal time"

$$\eta = \int \frac{dt}{a(t)}$$

and use this instead of time derivatives

$$a(t)\frac{\partial}{\partial t} = \frac{\partial}{\partial \eta}$$

$$h_{ij}'' + \frac{2a'}{a}h_{ij}' + k^2h_{ij} = 16\pi Ga^2\pi_{ij}^{GW}$$

- Two tricks:
- (1) Define "conformal time"

$$\eta = \int \frac{dt}{a(t)}$$

and use this instead of time derivatives

$$a(t)\frac{\partial}{\partial t} = \frac{\partial}{\partial \eta}$$

$$h_{ij}'' + \frac{2a'}{a}h_{ij}' + k^2h_{ij} = 16\pi Ga^2\pi_{ij}^{GW}$$

- Two tricks:
 - (2) Multiply h_{ij} by the scale factor and define

$$u_{ij} = ah_{ij}$$

$$u_{ij}'' + \left(k^2 - \frac{a''}{a}\right)u_{ij} = 16\pi G a^3 \pi_{ij}^{GW}$$

- Two tricks:
 - (2) Multiply h_{ij} by the scale factor and define

$$u_{ij} = ah_{ij}$$

$$u_{ij}'' + \left(k^2 - \frac{a''}{a}\right)u_{ij} = 16\pi G a^3 \pi_{ij}^{GW}$$

In the fining
$$m^2(\eta) = -\frac{a''}{a}$$
 effect of the expansion of the Universe

We obtain a harmonic oscillator with a time-dependent mass term!

$$u_{ij}'' + [k^2 + m^2(\eta)] u_{ij} = 16\pi G a^3 \pi_{ij}^{GW}$$

Propagation of GW in vacuum: Two regimes

$$u_{ij}'' + [k^2 + m^2(\eta)] u_{ij} = 0$$

- Two regimes:
 - 1. Short wavelength (k >> |m|)
 - $u_{ij} \sim exp(ik\eta) => h_{ij} \sim a^{-1}exp(ik\eta)$ [decaying]
 - 2. Long wavelength (k << |m|)
 - u_{ij} ~ a => h_{ij} ~ **constant**

Meaning of m²

$$m^2(\eta) = -\frac{a''}{a} = -a^2(2H^2 + \dot{H})$$

Hubble's expansion rate

$$H = \frac{\dot{a}}{a}$$

- The inverse of the expansion rate, (aH)-1, gives an estimate of the (comoving) size of the observable Universe, or "horizon"
- So, k << |m| is the "super-horizon" mode, and k >> |m| is the "sub-horizon" mode

Horizon Distance

- Horizon = the physical distance traveled by a photon
 - The (unperturbed) photon path in the radial direction is given by $ds_4^2=-dt^2+a^2(t)dr^2=0$
 - Integrating it, we obtain the physical distance traveled by a photon, d_{horizon}, as

$$d_{\text{horizon}} = a(t)r = a(t) \int_0^t \frac{dt'}{a(t')}$$

 Hubble length is given by H⁻¹, which is on the same order of magnitude as d_{horizon}. Comoving Hubble length is (aH)⁻¹, which is on the same order of magnitude as d_{horizon}/a(t)=r

GW "entering the horizon"

- This is a tricky concept, but it is important
- Suppose that GWs exist at all wavelengths
 - Let's not **yet** ask the origin of these "super-horizon GW", but assume their existence
- As the Universe expands, the horizon size grows and we can see longer and longer wavelengths
 - Fluctuations "entering the horizon"

GW Evolution: Summary

- Super-horizon scales [k << aH]
 - The amplitude of GW is conserved (i.e., h_{ij} = constant)
- Sub-horizon scales [k >> aH]
 - The amplitude of GW decays (i.e., h_{ij} ~ 1/a)

Therefore, the long-wavelength GW preserves the initial condition: the beginning of the Universe!

Source of GW in the early Universe?

$$u_{ij}'' + \left(k^2 - \frac{a''}{a}\right)u_{ij} = 16\pi G a^3 \pi_{ij}^{GW}$$

- Was there any <u>source of GW</u> in the early Universe?
- Yes, in a sense that there are many papers on possible sources in the literature
 - See a recent review article by C. Caprini and D. Figueroa, Classical and Quantum Gravity, 35, 163001 (2018), arXiv:1801.04268

Quantum generation of GW in the early Universe!

$$u_{ij}'' + \left(k^2 - \frac{a''}{a}\right)u_{ij} = 16\pi Ga^3\pi_{ij}^{GW}$$

- But, even if there was no source, GW can emerge quantum-mechanically! Grishchuk (1974); Starobinsky (1979)
 - This is the subject of today's lecture. We will talk about the right hand side on March 19
- To see this, we need to quantise the left hand side of the equation

Cosmic Inflation

Quantum fluctuations on microscopic scales

Inflation!

 Exponential expansion (inflation) stretches the wavelength of quantum fluctuations to very large scales

Cosmic Inflation

• Inflation is the **accelerated**, quasi-exponential expansion. Thus, we must have

$$\frac{\ddot{a}}{a} = \dot{H} + H^2 > 0 \quad \longrightarrow \quad \epsilon \equiv -\frac{H}{H^2} < 1$$

Actually, we rather need ε << 1, to have a sustained period of inflation. So H(t) is a slowly-varying function of time

Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

• Inflation is the **accelerated**, quasi-exponential expansion. Thus, we must have

$$\frac{\ddot{a}}{a} = \dot{H} + H^2 > 0 \quad \longrightarrow \quad \epsilon \equiv -\frac{\dot{H}}{H^2} < 1$$

Therefore,

$$\frac{\dot{a}}{a} = H \to a(t) = \exp\left[\int_{t_0}^t dt \ H(t')\right] \approx \exp[H(t-t_0)]$$
 During inflation, a(t) grows exponentially in time

$$m^2(\eta) = -\frac{a''}{a} = -a^2(2H^2 + \dot{\lambda})$$

$$u_{ij}'' + (k^2 - 2a^2H^2) u_{ij} = 0$$

During inflation, the scale factor grows exponentially in time,

$$a(t) \propto \exp(Ht)$$

In conformal time, this means

$$a(\eta) = -(H\eta)^{-1}$$
 for $-\infty < \eta < 0$
$$\eta = \int \frac{dt}{a(t)}$$

$$u_{ij}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{ij} = 0$$

During inflation, the scale factor grows exponentially in time,

$$a(t) \propto \exp(Ht)$$

In conformal time, this means

$$a(\eta) = -(H\eta)^{-1} \quad \text{ for } -\infty < \eta < 0$$

$$u_{ij}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{ij} = 0$$

The solution is

$$u_{ij} = A_{ij} \left[\cos(k\eta) - \frac{\sin(k\eta)}{k\eta} \right] + B_{ij} \left[\frac{\cos(k\eta)}{k\eta} + \sin(k\eta) \right]$$

- How do we fix the integration constants, Aij and Bij? We need QM!
 - We find A_{ij} and B_{ij}, such that the u_{ij} coincides with the known flat-space (Minkowski) results for the quantum fluctuation in vacuum

Second-order Action

 The action that gives Einstein's field equations is the socalled "Einstein-Hilbert action", given by the Ricci scalar R:

$$I_{GR} = \int \sqrt{-g} d^4x \left(\frac{1}{2} M_{\rm pl}^2 R\right) \qquad \text{with} \qquad \frac{M_{\rm pl} = (8\pi G)^{-1/2}}{\sqrt{-g} = a^3}$$

 Expanding this to second-order in h_{ij}, we obtain the action that gives the equation of motion for h_{ij}:

$$\begin{split} I_{GR}^{(2)} &= \int a^3 d^4 x \ \frac{1}{4} M_{\rm pl}^2 \left(\frac{1}{2} \dot{h}_{ij}^2 - \frac{(\nabla h_{ij})^2}{2a^2} \right) \ \text{with} \ {}^{h_{ij}} = \begin{pmatrix} {}^{h_+} & {}^{h_{\times}} & {}^{0} \\ {}^{h_{\times}} & {}^{-h_+} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \end{pmatrix} \\ &= \int a^3 d^4 x \ \frac{1}{2} M_{\rm pl}^2 \sum_{\lambda = +, \times} \left(\frac{1}{2} \dot{h}_{\lambda}^2 - \frac{(\nabla h_{\lambda})^2}{2a^2} \right) \end{split}$$

Second-order Action

 The action that gives Einstein's field equations is the socalled "Einstein-Hilbert action", given by the Ricci scalar R:

$$I_{GR} = \int \sqrt{-g} d^4x \left(\frac{1}{2} M_{\rm pl}^2 R\right) \qquad \text{with} \qquad \frac{M_{\rm pl} = (8\pi G)^{-1/2}}{\sqrt{-g} = a^3}$$

 Expanding this to second-order in h_{ij}, we obtain the action that gives the equation of motion for h_{ij}:

$$\begin{split} I_{GR}^{(2)} &= \int a^3 d^4 x \; \frac{1}{4} M_{\rm pl}^2 \left(\frac{1}{2} \dot{h}_{ij}^2 - \frac{(\nabla h_{ij})^2}{2a^2} \right) \; \text{with} \; {}_{h_{ij}} = \left(\begin{smallmatrix} h_+ & h_\times & 0 \\ h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right) \\ &= \int a^3 d^4 x \left(\frac{1}{2} M_{\rm pl}^2 \right) \sum_{\mathbf{r}} \; \left(\frac{1}{2} \dot{h}_{\lambda}^2 - \frac{(\nabla h_{\lambda})^2}{2a^2} \right) \end{split}$$

"Canonically-normalised" mode function

$$\begin{split} I_{GR}^{(2)} &= \int a^3 d^4 x \; \frac{1}{4} M_{\rm pl}^2 \left(\frac{1}{2} \dot{h}_{ij}^2 - \frac{(\nabla h_{ij})^2}{2a^2} \right) \\ &= \int a^3 d^4 x \underbrace{\frac{1}{2} M_{\rm pl}^2}_{\text{unwanted pre-factor}} \sum_{\lambda = +, \times} \left(\frac{1}{2} \dot{h}_{\lambda}^2 - \frac{(\nabla h_{\lambda})^2}{2a^2} \right) \end{split}$$

- Two tricks again:
 - (1) Use the conformal time: $a^3d^4x=a^4d\eta d^3x$

• (2) Define:
$$u_{\lambda} = \frac{M_{\mathrm{pl}}}{\sqrt{2}} a h_{\lambda}$$

"Canonically-normalised" mode function

$$I_{GR}^{(2)} = \int a^3 d^4 x \, \frac{1}{4} M_{\rm pl}^2 \left(\frac{1}{2} \dot{h}_{ij}^2 - \frac{(\nabla h_{ij})^2}{2a^2} \right)$$
$$= \int d\eta d^3 x \sum_{\lambda = +, \times} \left(\frac{1}{2} u_{\lambda}^{\prime 2} - \frac{1}{2} (\nabla u_{\lambda})^2 + \frac{a^{\prime \prime}}{2a} u_{\lambda}^2 \right)$$

- Two tricks again:
 - (1) Use the conformal time: $a^3d^4x=a^4d\eta d^3x$

• (2) Define:
$$u_{\lambda}=\frac{M_{\mathrm{pl}}}{\sqrt{2}}ah_{\lambda}$$

This is the correct ("canonical") normalisation!

$$u_{ij}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{ij} = 0$$

The solution is

$$u_{ij} = A_{ij} \left[\cos(k\eta) - \frac{\sin(k\eta)}{k\eta} \right] + B_{ij} \left[\frac{\cos(k\eta)}{k\eta} + \sin(k\eta) \right]$$

- How do we fix the integration constants, Aij and Bij? We need QM!
 - We find A_{ij} and B_{ij}, such that the u_{ij} coincides with the known flat-space (Minkowski) results for the quantum fluctuation in vacuum

$$u_{\lambda}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

The solution is

$$u_{\lambda} = A_{\lambda} \left[\cos(k\eta) - \frac{\sin(k\eta)}{k\eta} \right] + B_{\lambda} \left[\frac{\cos(k\eta)}{k\eta} + \sin(k\eta) \right]$$

• In the very short wavelength limit, $k\eta -> \infty$, we want to reproduce the quantum field theory result in the flat (Minkowski) space, which is $\exp(-ik\eta)$

$$u_{\lambda} \to \frac{\exp(-ik\eta)}{\sqrt{2k}}$$

$$u_{\lambda}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

The solution is

$$u_{\lambda} = A_{\lambda} \left[\cos(k\eta) - \frac{\sin(k\eta)}{k\eta} \right] + B_{\lambda} \left[\frac{\cos(k\eta)}{k\eta} + \sin(k\eta) \right]$$

• In the very short wavelength limit, $k\eta -> \infty$, we want to reproduce the quantum field theory result in the flat (Minkowski) space, which is $\exp(-ik\eta)$

$$u_{\lambda} \to \frac{\exp(-ik\eta)}{\sqrt{2k}}$$

$$u_{\lambda}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

The solution is

$$u_{\lambda} = \frac{1}{\sqrt{2k}} \left(e^{-ik\eta} - \frac{i}{k\eta} e^{-ik\eta} \right)$$

This term dominates in the super-horizon mode! "Particle Production by Inflation"

$$u_{\lambda}^{"} + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

$$u_{\lambda} \rightarrow -\frac{i}{\sqrt{2k^3\eta}} e^{-ik\eta}$$

$$u_{\lambda}^{"} + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

$$u_{\lambda} \rightarrow -\frac{i}{\sqrt{2k^3\eta}} e^{-ik\eta}$$

Since
$$u_{\lambda}=\frac{M_{\mathrm{pl}}}{\sqrt{2}}ah_{\lambda}$$
 and $a(\eta)=-(H\eta)^{-1}$

$$u_{\lambda}'' + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

$$h_{\lambda} \rightarrow \frac{i H}{\sqrt{k^3 M_{\rm pl}}} e^{-ik\eta}$$

$$u_{\lambda}^{"} + \left(k^2 - \frac{2}{\eta^2}\right)u_{\lambda} = 0$$

The super-horizon solution is

$$h_{\lambda}
ightarrow rac{i H}{\sqrt{k^3 M_{
m pl}}} e^{-ik\eta}$$

The amplitude of GW on super-horizon scale is proportional to H!

Quantum fluctuations during inflation are proportional to H

- THE KEY RESULT: The earlier the fluctuations are generated, the more its wavelength is stretched, and thus the bigger the angles they subtend in the sky.
- We can map H(t) by measuring fluctuations over a wide range of wavelengths
 - Earlier time -> Larger angular scales
 - Late time -> Smaller angular scales

Total Variance of GW

$$\sum_{ij} \langle h_{ij}(\mathbf{x}) h_{ij}(\mathbf{x}) \rangle = \sum_{ij} \int \frac{d^3k}{(2\pi)^3} \langle h_{ij}(\mathbf{k}) h_{ij}^*(\mathbf{k}) \rangle$$

$$=2\sum_{\lambda=+,\times}\int \frac{d^3k}{(2\pi)^3} \langle |h_{\lambda}(\mathbf{k})|^2 \rangle$$

$$h_{\lambda} \to \frac{iH}{\sqrt{k^3}M_{\rm pl}}e^{-ik\eta} = 4\int \frac{4\pi k^2 dk}{(2\pi)^3} \frac{H^2}{k^3M_{\rm pl}^2}$$

$$\int (2\pi)^3 k^3 M_{\rm pl}^2
= 4 \int \frac{dk}{k} \frac{H^2}{2\pi^2 M_{\rm pl}^2}
= \int \frac{dk}{k} \frac{8}{M_{\rm pl}^2} \left(\frac{H}{2\pi}\right)^2$$

GW variance per log(k)

$$\frac{k^3}{2\pi^2} \sum_{ij} \langle h_{ij} h_{ij}^* \rangle = \frac{8}{M_{\rm pl}^2} \left(\frac{H}{2\pi}\right)^2$$

- Variance per log(k) depends only on H; thus,
 - It is scale-invariant if H is constant during inflation; or
 - It is **nearly** scale-invariant if H changes slowly during inflation
- In general, H is a decreasing function of time; thus,
 - The variance of GW is smaller at shorter wavelengths. This is the key prediction of GW from the vacuum fluctuation during inflation

Energy Density of GW

$$\rho_{\rm GW}(t) = \frac{1}{4} M_{\rm pl}^2 \sum_{ij} \langle \dot{h}_{ij}(t, \mathbf{x}) \dot{h}_{ij}(t, \mathbf{x}) \rangle$$

$$= \frac{1}{2} M_{\rm pl}^2 \sum_{\lambda = +, \times} \langle \dot{h}_{\lambda}^2(t, \mathbf{x}) \rangle$$

Solution of EoM

$$\dot{h}_{ij} \propto a^{-2}(t)$$
 $\rho_{\rm GW}(t) \propto a^{-4}(t)$

$$ho_{\rm GW}(t) \propto a^{-4}(t)$$

As expected, because GW is radiation

During the radiation era,

$$\Omega_{\rm GW}(t) = \rho_{\rm GW}(t)/\rho_{\rm total}(t) = {\rm constant}$$

During the matter era,

$$\Omega_{\rm GW}(t) = \rho_{\rm GW}(t)/\rho_{\rm total}(t) = a^{-1}(t)$$

Watanabe & EK (2006)

Theoretical energy density

Spectrum of CM Spectrum of GW today 0.01 0.001

0.0001 1e-05 1e-06 1e-13 1e-18 1e-17 1e-16 1e-19

Frequency, f=kc [Hz]

Theoretical energy density

Spectrum of CIA Spectrum of GW today **GW** entered during the matter era 0.01 0.001 GW entered during the radiation era 0.0001 1e-05 1e-06 1e-17 1e-16 1e-13 1e-19 Frequency, f=kc [Hz]

Watanabe & EK (2006)

Spectrum of Oliversity Spectrum of GW today

Frequency, f=kc [Hz]

Why k⁻²?

$$\Omega_{
m GW}(t_0) = \Omega_{
m GW}(t_{
m horizon}) rac{a(t_{
m horizon})}{a(t_0)}$$
 during the matter era

with

$$k = a(t_{\text{horizon}})H(t_{\text{horizon}})$$

 $\propto aa^{-3/2}$
 $\propto a^{-1/2}(t_{\text{horizon}})$

Therefore,

$$\Omega_{\rm GW}(t_0) \propto \Omega_{\rm GW}(t_{\rm horizon}) k^{-2}$$

Watanabe & EK (2006)

Spectrum of Oliversity Spectrum of GW today

Theoretical energy density

Spectrum of GW today

Sec. 3.3 & 3.4

Evolution of Radiation Density

- You might have learned in the cosmology class that the radiation density redshifts as $\rho_{\rm radiation} \propto a^{-4}$
- This is true only when the radiation content (relativistic degrees of freedom) does not change
- The correct formulae:
 - Entropy conservation: $S = sa^3 \propto g_{*s}T^3a^3 = {\rm constant}$
 - Then the radiation density redshifts as

$$\rho_{\rm radiation} \propto g_* T^4 \propto g_* g_{*s}^{-4/3} a^{-4}$$

Theoretical energy density

kc [Hz]

Appendix: Scalar Perturbation

Inflationary Predictions

scalar

 Fluctuations we observe today in CMB and the matter distribution originate from quantum fluctuations during inflation

Mukhanov&Chibisov (1981) Guth & Pi (1982) Hawking (1982) Starobinsky (1982) Bardeen, Steinhardt&Turner (1983)

 There should also be ultra long-wavelength gravitational waves generated during inflation

Grishchuk (1974) Starobinsky (1979)

We measure distortions in space

A distance between two points in space

$$d\ell^{2} = a^{2}(t)[1 + 2\zeta(\mathbf{x}, t)][\delta_{ij} + h_{ij}(\mathbf{x}, t)]dx^{i}dx^{j}$$

- ζ: "curvature perturbation" (scalar mode)
 - Perturbation to the determinant of the spatial metric
- h_{ij}: "gravitational waves" (tensor mode)
 - Perturbation that does not alter the determinant

$$\sum_{i} h_{ii} = 0$$

Second-order Action for hij

 The action that gives Einstein's field equations is the socalled "Einstein-Hilbert action", given by the Ricci scalar R:

$$I_{GR} = \int \sqrt{-g} d^4x \left(\frac{1}{2} M_{\rm pl}^2 R\right) \qquad \text{with} \qquad \frac{M_{\rm pl} = (8\pi G)^{-1/2}}{\sqrt{-g} = a^3}$$

 Expanding this to second-order in h_{ij}, we obtain the action that gives the equation of motion for h_{ij}:

$$\begin{split} I_{GR}^{(2)} &= \int a^3 d^4 x \; \frac{1}{4} M_{\rm pl}^2 \left(\frac{1}{2} \dot{h}_{ij}^2 - \frac{(\nabla h_{ij})^2}{2a^2} \right) \; \text{with} \; {\scriptstyle h_{ij} \, = \, \left(\frac{h_+}{h_{\times}} \; \frac{h_{\times}}{-h_+} \; \frac{0}{0}}{0} \right)} \\ &= \int a^3 d^4 x \; \frac{1}{2} M_{\rm pl}^2 \sum_{\lambda = +, \times} \left(\frac{1}{2} \dot{h}_{\lambda}^2 - \frac{(\nabla h_{\lambda})^2}{2a^2} \right) \end{split}$$

Second-order Action for \(\zeta \)

 The action that gives Einstein's field equations is the socalled "Einstein-Hilbert action", given by the Ricci scalar R:

$$I_{GR} = \int \sqrt{-g} d^4x \left(\frac{1}{2} M_{\rm pl}^2 R\right) \qquad \text{with} \qquad \frac{M_{\rm pl} = (8\pi G)^{-1/2}}{\sqrt{-g} = a^3}$$

• Expanding this to second-order in ζ , we obtain the action that gives the equation of motion for ζ :

$$I_{GR}^{(2)} = \int a^3 d^4 x \ 2\epsilon M_{\rm pl}^2 \left(\frac{1}{2} \dot{\zeta}^2 - \frac{(\nabla \zeta)^2}{2a^2} \right)$$

with
$$\epsilon \equiv -\frac{\dot{H}}{H^2} \ll 1$$

Getting this result is not as easy as it may look. See the steps leading to Eq.(2.12) of Maldacena, JHEP 0305 (2003) 013, astro-ph/0210603

Second-order Action for ζ

 The action that gives Einstein's field equations is the socalled "Einstein-Hilbert action", given by the Ricci scalar R:

$$I_{GR} = \int \sqrt{-g} d^4x \left(\frac{1}{2} M_{\rm pl}^2 R\right) \qquad \text{with} \qquad \frac{M_{\rm pl} = (8\pi G)^{-1/2}}{\sqrt{-g} = a^3}$$

 Expanding this to second-order in ζ, we obtain the action that gives the equation of motion for ζ:

$$I_{GR}^{(2)} = \int a^3 d^4x \, 2\epsilon M_{\rm pl}^2 \left(\frac{1}{2}\dot{\zeta}^2 - \frac{(\nabla\zeta)^2}{2a^2}\right)$$
 unwanted pre-factor

with
$$\epsilon \equiv -rac{\dot{H}}{H^2} \ll 1$$

Getting this result is not as easy as it may look. See the steps leading to Eq.(2.12) of Maldacena, JHEP 0305 (2003) 013, astro-ph/0210603

Canonically-normalised mode function

- Two tricks again:
 - (1) Use the conformal time: $a^3d^4x=a^4d\eta d^3x$

- (2) Define: $u=\sqrt{2\epsilon}M_{\rm pl}a\zeta$ This is the correct ("canonical") normalisation!

The rest follows as before!

$$u'' + \left(k^2 - \frac{2}{\eta^2}\right)u = 0$$

$$u \to -\frac{i}{\sqrt{2k^3\eta}} e^{-ik\eta}$$

Since
$$u=\sqrt{2\epsilon M_{\rm pl}a\zeta}$$
 and $a(\eta)=-(H\eta)...^1$

The rest follows as before!

$$u'' + \left(k^2 - \frac{2}{\eta^2}\right)u = 0$$

The super-horizon solution is

$$\zeta
ightarrow rac{iH}{\sqrt{4k^3\epsilon}M_{
m pl}}e^{-ik\eta}$$

The amplitude of ζ on super-horizon scale is proportional to H/√ε!

Variance of ζ

$$\langle \zeta^2(\mathbf{x}) \rangle = \int \frac{d^3k}{(2\pi)^3} \langle |\zeta(\mathbf{k})|^2 \rangle$$

$$\zeta \to \frac{iH}{\sqrt{4k^3\epsilon}M_{\rm pl}}e^{-ik\eta} = \int \frac{4\pi k^2 dk}{(2\pi)^3} \frac{H^2}{4k^3\epsilon M_{\rm pl}^2}$$

$$= \int \frac{4\pi k^2 dk}{(2\pi)^3} \frac{H^2}{4k^3 \epsilon M_{\rm pl}^2}$$

$$= \int \frac{dk}{k} \frac{1}{2\epsilon M_{\rm pl}^2} \left(\frac{H}{2\pi}\right)^2$$

- In general, H is a decreasing function of time; thus,
 - The variance of ζ is smaller at shorter wavelengths. This has been measured from the CMB data! (Colloquium on March 5)

Important milestone of cosmology in 2012–2013

Variance of ζ

$$\langle \zeta^2(\mathbf{x}) \rangle = \int \frac{d^3k}{(2\pi)^3} \langle |\zeta(\mathbf{k})|^2 \rangle$$

$$\zeta \to \frac{iH}{\sqrt{4k^3\epsilon}M_{\rm pl}}e^{-ik\eta} = \int \frac{4\pi k^2 dk}{(2\pi)^3} \frac{H^2}{4k^3\epsilon M_{\rm pl}^2}$$

$$= \int \frac{4\pi k^2 dk}{(2\pi)^3} \frac{H^2}{4k^3 \epsilon M_{\rm pl}^2}$$

$$= \int \frac{dk}{k} \frac{1}{2\epsilon M_{\rm pl}^2} \left(\frac{H}{2\pi}\right)^2$$

Compare this with GW:

$$\sum_{ij} \int \frac{d^3k}{(2\pi)^3} \left\langle h_{ij}(\mathbf{k}) h_{ij}^*(\mathbf{k}) \right\rangle = \int \frac{dk}{k} \frac{8}{M_{\rm pl}^2} \left(\frac{H}{2\pi} \right)^2$$

Tensor-to-scalar Ratio

$$r \equiv rac{\langle h_{ij} h^{ij}
angle}{\langle \zeta^2
angle} = 16\epsilon$$

Super famous result for the

vacuum fluctuation, which does not necessarily hold for the sourced contribution! (the topic on March 19)

Tensor-to-scalar Ratio

$$r \equiv rac{\langle h_{ij} h^{ij}
angle}{\langle \zeta^2
angle} = 16\epsilon$$

ε << 1 is observationally shown already

 We really want to find this! The current upper bound is r<0.06 (95%CL)

BICEP2/Keck Array Collaboration (2018)