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Modeling the observed temperature anisotropy as T (n̂) → T (n̂)[1 + An̂ · p̂], where p̂ is some
preferred direction in the sky, the isotropy paper claims a detection of A with A ≈ 0.07. In terms of
the power spectrum of the modulating field, it is Cf

1
= (4π/9)A2

≈ 7×10−3. This result is based on
two methods: the direct pixel-based fitting and the bipolar spherical harmonics (BipoSH) analysis,
which are applied to low-resolution maps at Nside = 32. On the other hand, using the full-resolution
Planck maps, the non-Gaussianity paper and the Doppler-boost paper find Cf

1
≈ 2× 10−5, which is

consistent with the expected signal due to the Solar System motion with respect of the rest frame of
the cosmic microwave background: A ≈ 2.5(v/c) ≈ 3× 10−3. The apparent contradiction between
these two numbers comes from the multipole ranges used in these analyses: the former is based on
the low-resolution maps, whereas the latter is based on the full-resolution maps. In other words, a
large signal reported by the isotropy paper is not scale-invariant, and does not appear to extend to
high multipoles. If this (unknown) signal were to extend to higher multipoles, it should not be in
conflict with the stringent constraints reported by the non-Gaussianity and Doppler-boost papers.

I. SETTING UP NOTATION

The Planck collaboration claims that they see hemi-
spherical asymmetry of the power spectrum of tempera-
ture anisotropy of the cosmic microwave background.
One way to phenomenologically parametrize this is to

model the observed temperature anisotropy as

T (n̂) → T (n̂)[1 + f(n̂)], (1)

where f(n̂) is a modulating field, which may be expanded
in spherical harmonics as f(n̂) =

∑

LM fLMYLM (n̂).
Let us define the power spectrum of f as

Cf
L ≡

1

2L+ 1

∑

M

|fLM |2. (2)

Assuming that only the dipole modulation, L = 1, is
important, we write the above equation as

T (n̂) → T (n̂)[1 +
∑

M

f1MY1M (n̂)]

≡ T (n̂)[1 +An̂ · p̂], (3)

where p̂ is a preferred direction in the sky. The coefficient
A is equal to f̃10

√

3/(4π), where f̃10 is defined in some

rotated coordinates in which Y10 =
√

3/(4π)n̂ · p̂. This
means that

Cf
L =

1

3
|f̃10|

2 =
4π

9
A2. (4)

The Planck collaboration discusses this modulation in
(at least) four different sections in three different papers.
Our goal is to relate these four results and understand
their consistency.

II. NON-GAUSSIANITY AND

DOPPLER-BOOST PAPERS

The non-Gaussianity paper (Planck 2013 XXIV) and
the Doppler-boost paper (Planck 2013 XXVII) discuss

constraints on Cf
L and A.

The non-Gaussianity paper discusses this within the
context of constraints on the local-form trispectrum, τNL,
while the Doppler-boost paper discusses this within the
context of the dipole modulation caused by the Solar Sys-
tem motion with respect to the rest frame of the cosmic
microwave background.
In the non-Gaussianity paper, they use the estimator of

fLM given by Eq. (70) on page 15 of the non-Gaussianity
paper:

fLM ∝

∫

d2n̂ Y ∗

LM (n̂)
∑

l1m1

(C−1

tot
T )l1m1

Yl1m1
(n̂)

×
∑

l2m2

Cl2(C
−1

totT )l2m2
Yl2m2

(n̂), (5)

up to a constant normalization factor. Here, Ctot is the
total signal-plus-noise covariance matrix, and Cl is the
signal-only temperature power spectrum.
However, they do not use the proper C−1

tot filtering,
which is not diagonal in either harmonic or real space.
Instead, (probably to save computational time), they use
the diagonal weighting in harmonic space, i.e.,

(C−1

totT )lm →
Tlm

Cl,tot

, (6)

where Cl,tot = Cl + Nl and Nl is the noise power spec-
trum. Both the non-Gaussianity and Doppler-boost pa-
pers use this diagonal weighting.
Using this estimator up to lmax = 2000, they find

Cf
1
≈ 2× 10−5,

with high statistical significance. (See the data point at
L = 1 of the purple dashed line of Fig. 16 in their paper).
To avoid noise bias, they use the 143 GHz data for one of
the maps in the above estimator, and the 217 GHz data
for another.
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The Doppler effect yields, among other things, a dipo-
lar modulation with a y-type spectral distortion as

T (n̂) → T (n̂)[1 + bν n̂ · ~β], (7)

where bν has the frequency dependence that is similar
to the y-distortion, and it gives bν ≃ 2 and 3 for 143
and 217 GHz, respectively. The velocity term is given

by |~β| = v/c ≃ 1.2 × 10−3 for the Solar System motion
with respect to the rest frame of the cosmic microwave
background.

Their estimator for bν n̂ · ~β is given in Eq. (15) on page
4 of the Doppler-boost paper, which is identical to the
above estimator used by the non-Gaussianity paper. Ap-
plying this estimator to the 143 GHz and 217 GHz data,
they show that they detect the expected effect: namely,
A = bνβ ≃ 2.5×1.2×10−3 = 3×10−3. This measurement

translates into Cf
1
as

Cf
1
=

4π

9
(bνβ)

2 ≈ 1.3× 10−5.

Note that they find a different preferred direction when
they restrict their analysis to lower multipoles, l < 100
(see Fig. 3 of their paper). This seems consistent with
the finding of the isotropy paper that we discuss in the
next section. In order to avoid potential contamination
from a modulation in lower multipoles, they restrict their
analysis to lmin ≤ l ≤ 2000, where lmin = 500. Such a
lmin cut is not used in the non-Gaussianity paper.
The measurement reported in the non-Gaussianity pa-

per, Cf
1
≈ 2 × 10−5, is consistent with the reported de-

tection of the dipolar modulation by the Doppler boost.
Subtracting the expected Doppler boost effect from the

map, the non-Gaussianity paper reports Cf
1
≈ 0.2×10−5,

which is consistent with zero to within 68% CL.
Therefore, the results reported in the non-Gaussianity

paper and the Doppler boost paper agree well with each
other.

III. ISOTROPY PAPER

The isotropy paper (Planck 2013 XXIII) discusses con-
straints on A using two different methods: a direct pixel-
based likelihood (Section 5.5.2 from page 26), and the
bipolar spherical harmonics (BipoSH) method (Section
5.6 from page 30).
Both methods find A which is much bigger than those

found in the non-Gaussianity paper and the Doppler
boost paper. They find A ≃ 0.07, which translates into

Cf
1
≈ 7× 10−3,

which is 340 times bigger than that reported by the non-
Gaussianity paper. What is going on?
The answer is that, in the isotropy paper, they use

the data only up to smaller multipoles. The pixel-based
method uses maps smoothed to a 5 degree Gaussian beam
at Nside = 32, and the BipoSH method also uses maps
at Nside = 32, which limits the usable multipole range to
2 ≤ l ≤ 64. On the other hand, both the non-Gaussianity
paper and the Doppler boost paper use the maps at the
full resolution, Nside = 2048, with lmax = 2000. However,
the Doppler-boost paper removes lower multipoles and
use 500 ≤ l ≤ 2000, whereas the non-Gaussianity papers
uses all the multipoles up to lmax = 2000.
The BipoSH estimator for fLM is also similar to (if

not identical to) those used by the non-Gaussianity and
Doppler-boost papers. It is given by Eq. (43) on page 30
of the isotropy paper:

fLM ∝

∫

d2n̂ Y ∗

LM (n̂)
∑

l1l2

Cl2

σ2

l1l2,LM

×
∑

m1

Tl1m1
Yl1m1

(n̂)
∑

m2

Tl2m2
Yl2m2

(n̂), (8)

where σ2

l1l2,LM is the variance of the BipoSH coefficients
estimated from simulations. In other words, the BipoSH
estimator also uses the diagonal weighting rather than
the proper C−1

tot
weighting of the data.

They also apply the BipoSH analysis to higher-
resolution maps. Fig. 33 of the isotropy paper shows

Cf
1
/π as a function of the multipole bins used in the esti-

mation. They find Cf
1
/π ≈ 2.5×10−3, or Cf

1
≈ 8×10−3,

for 2 ≤ l ≤ 64, but find much smaller values for l > 64,
up to lmax = 384.

IV. CONCLUSION

The above observations give us the following plausible
explanation: when the data at l ≤ 64 are used, the dipole

modulation at the level of A ≈ 0.07 or Cf
1
≈ 7× 10−3 is

found. The origin of this large signal is unknown.
However, when the analysis is extended to much higher

multipoles, lmax = 2000, this signal is diluted, as it does
not extend to l > 64. Instead, another signal due to the
Doppler boost appears and is detected at the expected

level of Cf
1
≈ 2× 10−5.

Now, we hear that the mysterious part of the dipole
modulation actually extends to much higher multipoles
of order 1000. However, such a modulation cannot be
much greater than what is already constrained by the
non-Gaussianity and Doppler-boost papers; namely, A ≈

3× 10−3 and Cf
1
≈ 2× 10−5.


