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Dual production & Consistent treatment
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Setup inflaton ¢ — photon 4, — fermion 1) coupled system

L=2009)* ~V(@) ~;FF = Z¢FF +ipliy

Axionic inflaton U(1) gauge field Charged
coupled to ¢ fermion

L;f“\
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Setup inflaton ¢ — photon 4, — fermion ¢/ coupled system

L=30¢) ~V($) —;FF — - ¢FF + iply

Axionic inflaton U(1) gauge field Charged
coupled to ¢ fermion

Motivations

(D Particle Physics: Shift symmetry of ¢ s Reheating requires coupling

@ Phenomenology: Helical B mmp Baryogenesis & Magnetogenesis

@ Formal interest: Strong E ==y Schwinger effect
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Schwinger effect
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E
@
Julian Schwinger(1918~1994)
- Sufficiently strong (eE > m?) electric field causes a of charged
particles. It's a in QED.
* Not yet detected. It may be observed by EBI or X-FEL etc... ~ © Y Punne Eur Phys. J. D55, 327-340

A. Ringwald, Phys. Lett. B510, 107-116

* In the early universe, however, It may have played an
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Setup inflaton ¢ — photon 4, — fermion ) coupled system

L=2009)* ~V(@) ~;FF = Z¢FF +ipliy

Axionic inflaton U(1) gauge field Charged
coupled to ¢ fermion
Interactions
Kinetic energy Schwinger effect

¢ - CS coupling AH ' Gauge coupling |

Back-reaction Electric conductivity
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[Lattice simulation by Cuissa & Figueroa (2018)]
[See also Angelo’s talk!!]

Disregarded

Kinetic energy

AN

Back-reaction
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Previous works
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The ¢ — A, system well studied 1
mm) 4, production at inf. end is dominant 10%)
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However, ¥ is not yet included!
[Lattice simulation by Cuissa & Figueroa (2018)]
leflCUIty [See also Angelo’s talk!!]

Non-linear & non-perturbative Dynamics

mm) A(k),Y(k): different k-modes are coupled

mmp System is close to neither free mode nor thermal equilibrium !

. [See also Domcke, Ema, I\/Iukaida(2019);
We need a new approaCh to SOlve It Gorbar, Schmitz, Sobol, Vilchinskii(2021)]
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Axionic inflaton U(1) gauge field
coupled to ¢
: . | agp
Assumption: the inflaton rolls at a constant velocity & = Zf_H

The EoM for the gauge field mode function Ay is given by

laz + k2 |+ zkﬂ A (1,k) =0

Either + mode is amplified by the tachyonic instability.

In the slow-roll phase, an analytic solution is available.

If & = 20% =const.>(0 ===y [ = \/%e”f/zw_m/z (2ikT)



Review no-charged-particle case o d
EM field production
(without ) HA Py
[ tachyonic growth
108} ’\
| B
1000+
_ 5:5
1+ dilution
0.010 0.100 1 10 100
4 )
1. Due to the exp amplification, very strong EMFs are produced, E > B > H?.
2. The typical EM length scaleis L,,, = é/H
\3. The typical EM time scaleis t,,,, = 1/H A
.‘\ 7 1 ___k
5+ —4 g5+ K |k |4H4 7T !
Pt k) =a Pyt k) = o | (1, k) = KTy e, Pitrb=a PR = o Ot (1 = =™ Wk

47



Review no-charged-particle case g
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EM field orientation
(without ) 25, coRn

A S,

S

Since the parity is fully violated,
EM fields take an anti-parallel configuration.

Evolution of E - B for 0.5 e-folds

(1. Due to the exp amplification, very strong EMFs are produced, E > B > HZ.\
2. The typical EM length scaleis L,,, = é/H
3. The typical EM time scale is t,,,, = 1/H

\4. E and B are anti-parallel, E- B = —1 y

™ W' (—kt)|?,

4774 N K \Icr*‘H“
st = B 6z, Pplr ) = PR 0 = o vt (1 =

ot _ At _
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4 properties in the no charged particle case

o Strong EMFs are produced: E,B >» H?
9 The EM length scale Lo, = &/H
9 The EM time scale is 1oy = 1/H

o EMFs are anti-parallel: E-B = —1
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Solve the system of A and ¢

=
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L=-(0¢)2 —V(¢p) —-FF — %ngﬁ + P DY

Axionic inflaton U(1) gauge field Charged fermion
Assumption: the inflaton rolls at a constant velocity & = %

The EoMs for the gauge field and fermion are coupled and non-linear
~ U . ~ 3 n
¥ (5u+ngA )+ aH}f Y =0

2¢ _
OEA,-—aiA,- 6,110]1‘11 a e], f’uZLU’}/'ul]U

We cannot exactly solve them... Then, we introduce two prescriptions

o Integrating out ¢: Reduce the coupled EoMs into a single non-linear eq.

9 Mean-field approx: linear eq. for perturbation and consistency eq.



Integrating out ¢
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[Domcke&Mukaida(2018)]
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Remember the properties of the produced EMFs

OE,B>>H2 9 Lem = ¢/H e Tem = 1/H

Typical momentum of the Schwinger produced fermion is p,, =~ veE

Thus, a hierarchy of scales exists

~ N

E, B = const.

For fermions, EMFs look static and homogeneous,

Schwinger current induced by static, homogeneous & anti-parallel EMFs is known:

NB; this current satisfies the chiral anomaly equation. Assumption: the fermion’s mass is negligible,‘ mw < I‘I‘ ,_'f;f/
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We need not d,J; but J; itself.

Assumption: the physical EMFs are static, E,B « a?, fort = H™?!

3
e"BE; nB
0r(a’e];) = " Coth(— .
T 1 2}_[2 E
Since t., =~ H™ 1, this expression may not be very accurate. This assumption
”
But on average, E and B amplitudes should be constant, 4 may lead to O(1) Error?

because the energy injection from the insflaton is constant, & = const.
We obtain a single non-linear EoM for Al!

26
O%Ai—(ﬁAi 6‘,]10]141 a e],
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How to solve a full non-linear equation??

2 e’ BE;
03Ai—5§Ai+7§€ijlajAz = a’eJ; eJi = l

B
- 6mladH )

coth(—
E
We introduce mean-field approx. and split EMFs into a mean and a perturbation

Ex,x)~FEy+0FE(1,), B(t,x) 2~ By+06B(1,x).

The Schwinger current is accordingly decomposed. (E, - By = —1,but E - 6B # —1)

a*ed = a*e(Jy+6.J),
3
ByE B
azngze 0 Ocoth(ﬁ)ez,
6m¢aH E
3 B36E,—E35B B B B
¢ 072" 70 Zcoth(n 0)+(BoéEz+anBz)ﬂcsch2(ﬂ)
6m2aH E5+B; Ep Ey
E:BySE —B>Ey0B B
+-2 0 5 g 0 coth(u)
EO+BO

a’ed.J =

€z

0

Ej



Linearized eq. for perturbation —

s I O, g e SN S, TN

N s T N g g T M T N S 0 A I G L S 1 B N I N i O TP L RO I NI N A I P P s AN 1 N P ST SO P P 3P N

The EoM for the perturbation is

) 2Geft
[ag —Z0,+1- A7) =
Z Z
with the electric and magnetic conductivity:
: 1 : .
ZEZE+ZEISIDZQk, feffEf—E(ZB-I—ZBrSIDZQk) Ey-e*(k) = —sin0/v/2.
Tp= e’ By B NELED Tp= e’ By By coth( i )+i schz(ﬂ)
E e I \ B+ B (Eg] ’ P rei2|\E+ B B ) B o\ Eo
__¢h (B ey ol (220 - 20 g 220)
ZB‘6n2a2H2(E§+B§ o TE )| B = 2 E? + B2 e A

Fortunately, an analytic solution is available!

1 p |
dig)(r,k) = ——éerl2 7212 AW_ig,z+1)/2(—212) + caM_j¢ . (z+1)/2(—212) |,

V2k
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We impose the consistent equation to determine the mean-field value,

Require the integration over the perturbation reproduces the mean field amplitude

Mean-field

~

Perturbation

Eo=/2px(Eo, B, Bo=1/205(Eo, Bo),

1 ! 28 dz . 2¢ g
:Zf dcosﬁf —zgf’géa) f dcos@f —@Jr a),
-1 0 Z

_ H
955 ) (2,08) =
a2

2

H s
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T[

2
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»

We numerically found the consistent amplitudes of EMFs for given &

NB: This matching doesn’t take into account the direction of EMFs.
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Numerical results 5 H
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Self-consistent mean-field amplitudes for EMFs
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Charged fermions drastically suppress the EMF amplitudes.
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E,B power spectra
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« The spectra reach their peaks earlier due to the effective friction.
| L
« EMFs keep the 4 properties, which verifies our argument. A%, N T 74

D i



Numerical results
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Direction dependence of the power spectra
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Schwinger current prevents the EMF production in similar directions

perpendicular production is favored = Rotation of the EMFs??



Energy conservation N 4
The energy density of EMFs evolves as
(pa)=-2H(E*+ B* -2{H(E-B) —e(E - J),
Hubble dilution Energy injection produce&accelerate
from ¢ charged fermions
Since we consider a static system,
(p4) should vanish and the 3 terms — T
should be balanced. 1 00F ®0 0000 0o w0 0o oo o —* N
Rem + Ry =1, D560.95
I o
_ <E + B ) 090'_ * Rem+Ry
em = N Tt ©) , pO
S(E - B)| Rem+Ry
€<E~ . j> 5 10 15 20 2I5
R; = 4

" 2H(E - B)|
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« For & =10, the energy transfer to the fermions is dominant.

« We don’t know why... But it may have an interesting consequences.
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Inflaton ¢ — photon A, — fermion ¢/ coupled system is well motivated

but difficult. We need a new approach to solve this.

We integrated out /) by using the scale separation L, < Lep,

and introduced mean-field approx. to solve non-linear eq. for

EM conductivities provide effective friction and reduction of ¢.

We numerically solve the consistent equation to find the mean fields.

The EM amplitudes are drastically suppressed compared to no- ) case.

Interestingly, the of the injected energy from ¢ goes
to the charged fermions for & = 10, which changes the conventional

picture and may leads new consequences.



