On the origin of primordial gravitational waves

Paolo Campeti

Max-Planck-Institute for Astrophysics - ORIGINS Excellence Cluster

(Spectator) axion-U(1) inflation

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{pl}^2 R}{2} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{$$

- Axion and gauge field are spectators
- Inflation realised by standard inflaton
- Time-dependent axion + Chern-Simons coupling \rightarrow breaks conformal invariance of gauge field \rightarrow amplification of only one helicity \rightarrow parity-violating GWs!
- Amplitude of gauge field fluctuations controlled by axion's velocity: $A \propto e^{\pi\xi} = e^{\frac{\pi\lambda|\dot{\chi}|}{2Hf}}$

Barnaby + '12,Namba + '15, $-\frac{1}{2}(\partial\chi)^2 - U(\chi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \lambda\frac{\chi}{f}F_{\mu\nu}\tilde{F}^{\mu\nu}$ Mukohyama + '14 Gauge **Chern-Simons** Axion field coupling

Vacuum vs sourced fluctuations

	SOURCED	OBSERVATIONS
tilted, an	Large and non- Gaussian or negligible depending on model	Remarkably consistent with vacuum
non-	Scale-dependent, non-Gaussian, chiral	? (To be checked)

Constraint on vacuum fluctuations

PC & E. Komatsu 2022 arXiv:2205.05617

Current CMB constraints on vacuum fluctuations

The CMB is the most promising way to detect vacuum fluctuations

Planck + BAO + lensing (SH)

Planck + BAO + lensing (cond. HL)

BK18

Planck + BK18 + BAO + lensing (SH)

Planck + BK18 + BAO + lensing (cond. HL)

BK18 (fixed β_S)

 $Planck + BK18 + BAO + lensing (SH, fixed \beta_s)$

 $Planck + BK18 + BAO + lensing (cond. HL, fixed <math>\beta_s$)

Current CMB constraints on vacuum fluctuations

The CMB is the most promising way to detect vacuum fluctuations

PC & E. Komatsu 2022 arXiv:2205.05617

BK18 (fixed β_S)

- BAO + lensing (SH, fixed β_s) Planck + BK1

 $Planck + BK18 + BAO + lensing (cond. HL, fixed \beta_s)$

Constraint on gravitational waves sourced by matter fields

PC & O. Özsoy, I. Obata, M. Shiraishi 2022 arXiv:2203.03401, accepted in JCAP

Axion potential and sourced scalar modes

- Sourced non-Gaussian scalar modes from inverse decay of gauge fields $A_i + A_i \rightarrow \delta \chi \rightarrow \delta \phi \propto \mathscr{R}$
- **Localized profile for axion velocity** \rightarrow amplify only large scales modes where CMB constraints are weaker ($\ell \leq 100$)
- 2 choices of axion potential (M1, M2):

$$U_{M1}(\chi) = \Lambda^4 \left[1 - \cos\left(\frac{\chi}{f}\right) \right]$$
 Frees
Name

$$U_{M2}(\chi) = \mu^{3}\chi + \Lambda^{4} \left[1 - \cos\left(\frac{\chi}{f}\right) \right] \&$$

Axion's velocity peaks at time τ_*

• Effective coupling strength $\xi = -\frac{\lambda \dot{\chi}}{2Hf}$ peaks at $\xi_* = \xi(\tau_*)$

Ozsoy + '20 $\Lambda^4 \lesssim \mu^3 f$

Sourced modes

- Strongly scale-dependent sourced tensor spectrum
- Gaussian bump feature: $\mathcal{P}_{j}^{(s)}(k) = \left[\epsilon_{\phi} \mathcal{P}_{\mathcal{R}}^{(v)}(k)\right]^{2} f_{2,j}^{c} \left[\xi_{*}, \delta\right] \exp\left[-\frac{1}{2\sigma_{2,j}^{2} \left[\xi_{*}, \delta\right]} \ln^{2}\left(\frac{k}{k_{*} x_{2,j}^{c} \left[\xi_{*}, \delta\right]}\right)\right]$ $j = \{\mathcal{R}, \pm \}$
 - $\xi_* \rightarrow$ amplitude of the peak

 $\delta \rightarrow (\propto {\rm axion's\ acceleration})$ width of the peak

 $k_* \rightarrow$ position of the peak (scale exiting the horizon when axion's velocity is max)

Tensor power spectrum

Method: data and likelihood

Determine the extent to which axion-U(1) can amplify tensor modes while staying consistent with CMB constraints

- cosmological scales
- spectrum (Shiraishi + '19)
- current state)

GOAL:

We use *Planck* + BICEP/Keck latest data \rightarrow state-of-the-art for constraining large

Parity-violating correlations TB, EB give only very weak constraints (Gerbino + '16)

Tensor bispectrum is complementary but expected to have lower SNR w.r.t. power

We exploit the scale-dependence of the **2-point function** (most constraining at the

Method: profile likelihood

- Frequentist
- Profile likelihood for a parameter of interest θ :
 - 1. fix θ to multiple values
 - 2. Minimize $\chi^2(\theta) = -2\log \mathscr{L}(\theta)$

3.By construction minimum χ^2_{min} coincides with global MLE ("best-fit")

METHOD	MCMC	PROFILE LIKEL
PRIORS	Yes	No
<section-header></section-header>	Yes with Jeffreys prior	Yes
VOLUME EFFECTS	Maybe	No

Method: profile likelihood

- Frequentist
- Profile likelihood for a parameter of interest
 - 1. fix θ to multiple value
 - 2. Minimize $\chi^2(\theta) = -$

3.By construction min coincides with global ("best-fit")

PC & E.Komatsu 2022 arXiv:2205.05617

We applied the profile likelihood to vacuum Planck + BICEP constraints and compared to MCMC

Temperature vs polarization

- Observational constraints driven by *Planck* temperature (i.e. by sourced scalars!)
- B-modes data weakly constrained \rightarrow minor effect on the bounds
- Large scale temperature data are already **cosmic-variance limited** in *Planck* data \rightarrow improve polarization!

Total tensor-to-scalar ratio

Total (vacuum + sourced) tensor-to-scalar ratio:

$$r_{*}(k) = \frac{\sum_{\lambda=\pm} \left[\mathscr{P}_{\lambda}^{(\text{vac})}(k) + \mathscr{P}_{\lambda}^{(\text{sourced})}(k) \right]}{\mathscr{P}_{\mathscr{R}}^{(\text{vac})}(k) + \mathscr{P}_{\mathscr{R}}^{(\text{sourced})}(k)}$$

- Larger sourced signal allowed at larger scales
- Still possible to get significant sourced
 contribution to r_{*} even
 with small r_{vac}

Theoretical self-consistency bounds

- filed production should not influence background evolution of axion)
- **Perturbativity** (exponentially large gauge field amplitudes can driven the system out of perturbative regime) \rightarrow lower bound on f/M_{pl}

Backreaction upper/lower bounds on f/M_{pl} (axion must be a spectator / gauge

Theoretical self-consistency + observations bounds

- Observational constraints are competitive with theoretical bounds
- Parameter space shrinks but still remains large and interesting for future Bmode experiments

Conclusions: axion-U(1) is still interesting for future experiments

 Future <u>space</u> and <u>ground-based</u> Bmode experiments will be necessary to <u>distinguish vacuum</u> from sourced (Models A, B, C) primordial gravitational waves

 Full-sky space mission will improve also EB, TB measurements and detect O(1) tensor
 non-Gaussianity

(Spectator) axion-SU(2) inflation

spectrum

$$P_T^{L, Sourced}(k) = r_* P_{\mathcal{R}}(k) \exp \left[-\frac{1}{2\sigma^2} \ln^2 \left(\frac{k}{k_p} \right) \right]$$

Thorne + '17

- U(1) source tensors at 2^{nd} order \rightarrow source scalars and scalar non-Gaussianity
- **SU(2)** source tensors at linear order! \rightarrow negligible sourced scalars and scalar non-Gaussianity!

LiteBIRD constraints on axion-SU(2) inflation

PC & E. Komatsu and the LiteBIRD Collaboration in preparation

Constraining axion-SU(2) with LiteBIRD PC, E. Komatsu + LiteBIRD collaboration (in preparation)

- SU(2) can source GWs the exceed vacuum contribution at reionization bump scales by factor ~ 5 (Ishiwata + '21)
- **Goal:** show that full-sky survey with access to **reionization bump** is necessary to understand origin of primordial GWs
- Method: Realistic simulations, profile likelihood

Constraints on axion-SU(2) from CMB, PTA and interferometers

PC & E. Komatsu, D. Poletti, C. Baccigalupi 2021 arXiv:2007.04241, JCAP 2021, 01,012

Testing SU(2) with interferometers

- Gauge fields (e.g. SU(2)) 10^{-2} can generate a signal detectable in many 10^{-4} decades in frequency while staying consistent 10^{-6} $\mathcal{P}_T(k)$ with CMB bounds 10^{-8}
- Testable at PTA and space interferometers!

peaks in space interferometers range 10^{-4} but is not detectable at CMB scales

 10^{-10}

 10^{-12}

Astrophysical foregrounds for direct detection experiments

- Superposition of many astrophysical sources integrated over time
- LIGO/Virgo measured rate of BBH and **BNS** mergers
- Main sources:
 - BBH + BNS (all interferometers)
 - Massive BBH in nano-micro Hertz range

DETECTOR

- Galactic WD binaries
- Extra-Galactic WD binaries

axion-SU(2) at interferometers scales

- We derived new filter for cross-correlation and foreground marginalisation for interferometers (including multi-band foreground cleaning)
 We take into account
- We take into account
 foregrounds for every
 experiment (lighter shade
 error bars).
- Coherent assumptions and realism for every experiment

f [Hz]

axion-SU(2) at interferometers scales

- We derived **new filter** 10^{-5} for cross-correlation and foreground 10^{-7} marginalisation for 10^{-9} interferometers 10^{-11} foregrounds for every 10⁻ We take into account 10^{-13} 10^{-15} shade error bars). 10^{-17} 10^{-19} Coherent assumptions and realism for every 10^{-21} experiment

Future roadmap

IF CONSISTENT WITH VACUUM

TARGET FOR ULTRA-SENSITIVE **INTERFEROMETERS: DECIGO, BBO, ARES**

Conclusions

In light of **Planck** and **BICEP**/ **Keck** data the parameter space of axion-U(1) models remains large and interesting for future **B-mode experiments.**

Axion-SU(2) can produce sourced GWs exceeding vacuum contribution especially at reionization bump scales, which are accessible only with a full-sky space mission like LiteBIRD

- Measuring the shape of the GW spectrum along many decades in frequency is needed to understand its origin.
- Control of foregrounds is fundamental for all probes.
- B-mode experiments are the most sensitive and closest in time.
- Results suggest a future roadmap.