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(Spectator) axion-U(1) inflation
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» Axion and gauge field are spectators

» Inflation realised by standard inflaton

» Time-dependent axion + Chern-Simons coupling — breaks conformal invariance
of gauge field — amplification of only one helicity — parity-violating GWs!

» Amplitude of gauge field fluctuations controlled by axion’s velocity:
A_ x e™ = eﬂ%l




Vacuum vs sourced fluctuations

OBSERVATIONS




Constraint on vacuum
fluctuations

PC & E. Komatsu 2022 arXiv:2205.05617



Current CMB constraints on vacuum fluctuations

The CMB is the most promising way to detect vacuum fluctuations
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Current CMB constraints on vacuum fluctuations

The CMB is the most promising way to detect vacuum fluctuations
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Constraint on gravitational
waves sourced by matter fields

PC & 0. Ozsoy, |. Obata, M. Shiraishi 2022 arXiv:2203.03401, accepted in JCAP
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Axion potential and sourced scalar modes

Sourced non-Gaussian scalar modes from inverse decay of
gauge fields A;+ A = oy = 6¢p x A

Localized profile for axion velocity — amplify only large
scales modes where CMB constraints are weaker (£ < 100)

2 choices of axion potential (M1, M2):
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Axion’s velocity peaks at time 7.
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Sourced modes
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» Strongly scale-dependent sourced tensor .
spectrum <
Q 10

» Gaussian bump feature:

Tensor power spectrum
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Method: data and likelihood

GOAL:
Determine the extent to which axion-U(1) can

amplify tensor modes while staying consistent
with CMB constraints

» We use Planck + BICEP/Keck latest data — state-of-the-art for constraining large
cosmological scales

» Parity-violating correlations TB, EB give only very weak constraints (Gerbino + '16)

» Tensor bispectrum is complementary but expected to have lower SNR w.r.t. power
spectrum (Shiraishi +'19)

» We exploit the scale-dependence of the 2-point function (most constraining at the
current state)






Method: profile likelihood

» Frequentist

SRS UEEERELET We applied the profile likelihood

ZIEMCICEORNECEY {9 vacuum Planck +BICEP \e
Ve constraints and compared to
MCMC Yes
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Temperature vs polarization

» Observational constraints
driven by Planck temperature
(i.e. by sourced scalars!)

» B-modes data weakly

constrained — minor effect
on the bounds

» Large scale temperature data
are already cosmic-variance

limited in Planck data —
improve polarization!

5.0

4.5

Ex limit

4.0

3.5

7%x107°

6.5

6.0

Ex limit

5.0

4.5

4.0

7%x107°

5x 1074
K« [MpC_l]

5x 1074
K [Mpc_l]

5% 1073

5% 1073

M1 model

7%x107°

M2 model

5% 1074
K [MpC_l]

5% 1073

7%x107°

5x 1074
K [Mpc_l]

5% 1073

=10

- 10

-10



Total tensor-to-scalar ratio

» Total (vacuum +
sourced) tensor-to-
scalar ratio:
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» Larger sourced signal
allowed at larger scales
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Backreaction upper/lower bounds on f/M,, (axion must be a spectator / gauge
filed production should not influence background evolution of axion)

Perturbativity (exponentially large gauge field amplitudes can driven the system
out of perturbative regime) — lower bound on f/M

1 A
10 117  13.3 15 16.7  18.3 20 217 5 583 6.7 7.5 83 917 10  10.83
Q/m :
' a 0.100 &
O100§ ‘(VO«C N E
¢\Q
S 0.010 { o¢ J 0010
Mpl . Mpl
0.001 ¢ . 0.007
: Model 1:6 = 0.6 : . Model 2:6 = 0.6
10—4 T B - T e I T 10—4 oo S A A s
3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 3.0 35 4.0 4.5 5.0 55 6.0 6.5

& &y



Theoretical self-consistency + observations bounds

» Observational constraints are competitive with theoretical bounds

» Parameter space shrinks but still remains large and interesting for future B-
mode experiments
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Conclusions: axion-U(1) is still interesting for future experiments

» Future and
ground-based B-
mode experiments ——
will be necessary to
distinguish vacuum

Model?A
from sourced B
107
(Models A, B, C) e
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(Spectator) axion-SU(2) inflation
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LiteBIRD constraints on
axion-SU(2) inflation

PC & E. Komatsu and the LiteBIRD Collaboration in preparation



Co “Straining axion-SU(Z) With LiteBI RD PC, E. Komatsu + LiteBIRD collaboration (in preparation)

» SU(2) can source GWs the exceed
vacuum Contributicn at reionization | «--- Single-Field Slow-Roll BB, r = 0.00461, ny = — r/8, T = 0.0544

| == Axion-SU(2) BB, ryac = 1074, r= = 0.00461, k, =0.01, o=1
| Axion-SU(2) BB, rysc=10"%, r=0.041, k, =9 x 107°, 0=3.2
| B LiteBIRD error bars

( IS h iwata —+ ’2 1 ) Cosmic variance-limited error bars

bump scales by factor ~ 5

» Goal: show that full-sky survey with
access to reionization bump is
necessary to understand origin of
primordial GWs

» Method: Realistic simulations, profile 107 Reionization

likelihood . _bump
101!




Constraints on axion-SU(2) from
CMB, PTA and interferometers

PC & E. Komatsu, D. Poletti, C. Baccigalupi 2021 arXiv:2007.06241, JCAP 2021, 01,012



Testing SU(2) with interferometers

» Gauge fields (e.g. SU(2))
can generate a signal
detectable in many
decades in frequency
while staying consistent 10
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space interferometers! "
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Astrophysical foregrounds for direct detection experiments

» Superposition of many astrophysical
sources integrated over time

» LIGO/Virgo measured rate of BBH and GW
BNS mergers BACKGROUND
EMISSION AT
» Main sources: BBH INFLATION
» BBH + BNS (all interferometers) ‘l’
» Massive BBH in nano-micro Hertz ‘
range MASSIVE BBH

» Galactic WD binaries

» Extra-Galactic WD binaries

DETECT

TODAY



axion-SU(2) at interferometers scales

» We derived new filter for

cross-correlation and 10~5  —— Axion Signal r, = 400, kp = 10"> Mpc™', 0 = 9.1
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10
: =
foreground cleaning) S
C? 10— 13
» We take into account < X
B \
foregrounds for every 10717 N o
experiment (lighter shade  _,; \ :— ——————————————
error bars). B S
10—19
» Coherent assumptions
: 10— 21
and realism for every
10—2Y 10— 17 10— 14 10— 11 10~° 10~° 102 10t

experiment
P f |H z]



axion-SU(2) at interferometers scales

» We derived new filter
for cross-correlation
and foreground
marginalisation for
interferometers

» We take into account
foregrounds for every
experiment (lighter
shade error bars).

» Coherent assumptions
and realism for every
experiment

10— 1%

10—21

—— Axion Signal r, = 400, kp = 10t° Mpc”

Primordial Signal »r = 0.06
Primordial Signal r = 0.001
Primordial Signal » = 0.01

Axion Signal ry = 0.15, ky =

LiteBIRD




Future roadmap

IF LITEBIRD (AND/OR CMB-S4)
MEASURES > 0

TEST SHAPE, CHIRALITY AND
GAUSSIANITY

IF BLUE-TILTED,
CHIRAL OR NON-
GAUSSIAN

IF CONSISTENT WITH
VACUUM

TARGET FOR ULTRA-SENSITIVE TARGET FOR LISA AND OTHER POST-LISA
INTERFEROMETERS: DECIGO, BBO, ARES PROPOSALS (DO, AEDGE. . .)




Conclusions
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In light of Planck and BICEP/
Aeck data the parameter space
of axion-U(1) models remains
large and interesting for future
B-mode experiments.

LiteBIRD




