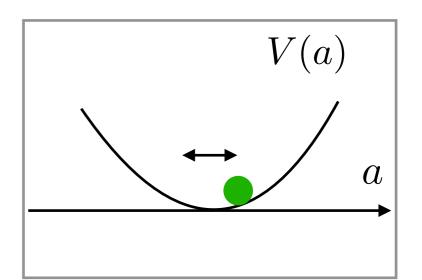
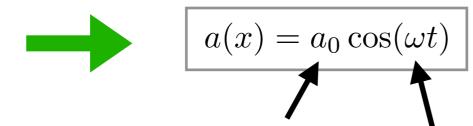
Searching for axion dark matter with magnons

Asuka Ito


from Tokyo Institute of Technology


Refs: T.Ikeda, Al, K.Miuchi, J.Soda, H.Kurashige, Y.Shikano (2021)

Axion DM

Axions can behave as a cold DM in the evolution of the universe if it oscillates around the bottom of the potential:

The equation of state parameter $w=rac{p}{
ho}=0$

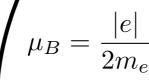
corresponding to the abundance of the axion DM

determined by the axion mass $\,$ ($\omega=m_a$)

% $\,$ In the case of the QCD axion, the axion mass around $\,$ $10\mu eV$ $\,$ is favored for DM.

$$\Omega_{\rm DM} \sim 0.3$$
 \longrightarrow F_a \longrightarrow m_a

$$10 \mu eV \sim cm \sim GHz$$
 scale of tabletop size experiments

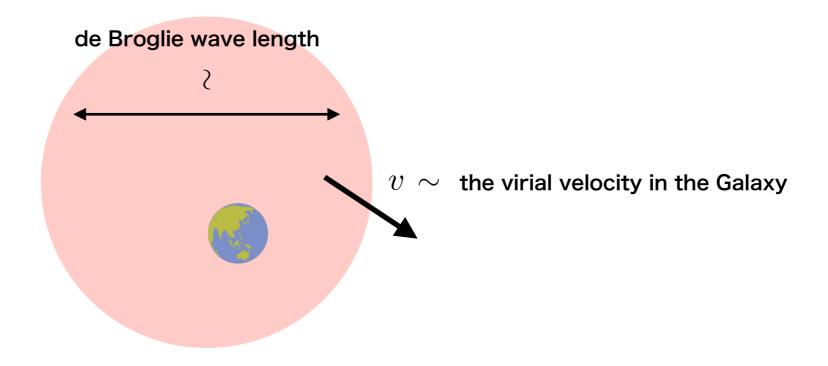

Axion-electron interaction

An axion can interact with an electron as

$$\mathcal{L}_{\text{electron}} = -ig_{aee}a(x)\bar{\psi}(x)\gamma_5\psi(x) \qquad \left(\begin{array}{c} \text{KSVZ: loop level} \\ \text{DFSZ: tree level} \end{array} \right)$$

In the non-relativistic limit for an electron, we have a Hamiltonian for the Schrodinger equation

$$\mathcal{H}_{\mathrm{int}} \simeq -2\mu_B \hat{m{S}} \cdot \left(rac{g_{aee}}{e}
abla a
ight)$$
 effective magnetic field $\hat{S}^i = rac{\sigma^i}{2}$: Spin of the electron


$$\hat{S}^i = \frac{\sigma^i}{2}$$

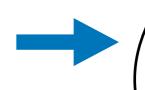
Reflecting the nature and distribution of the axion DM

Effective magnetic field

The axion DM behaves as wave, which is coherently oscillating within the de Broglie wave length. When the axion DM has a relative velocity to us,

then the gradient of the axion DM is $\ \,
abla a \sim m_a v a$, therefore

$$B_a = \frac{g_{aee}}{e} \nabla a \sim \frac{g_{aee}}{e} m_a v a$$

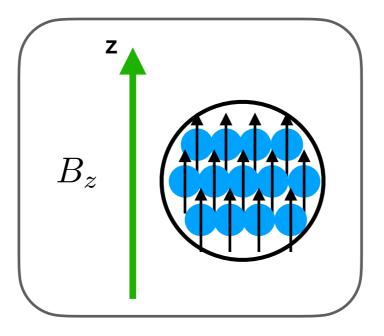

How large is the amplitude of the effective magnetic field?

Effective magnetic field

We can estimate the amplitude of the effective magnetic field as

$$B_a \simeq 4.4 \times 10^{-8} \times g_{aee} \left(\frac{\rho_{ob}}{0.45 \text{ GeV/cm}^3} \right)^{1/2} \left(\frac{v}{300 \text{ km/s}} \right) [\text{T}]$$

 g_{aee} is tiny, then how can we detect such a small magnetic field?



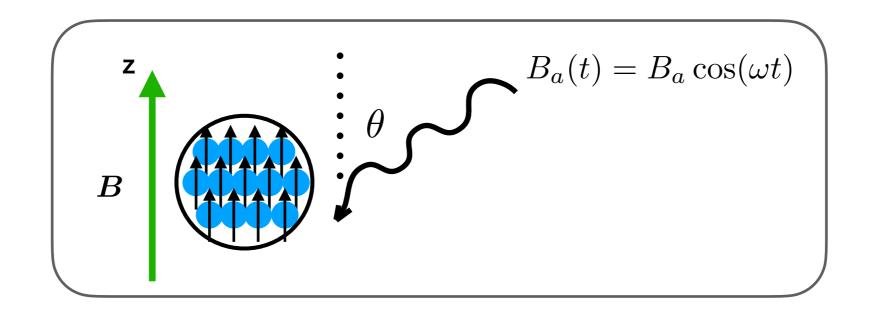
- Axion-electron resonance caused by coherent oscillation of axion DM
 Use so many electrons (magnon)

R Barbieri, et al. (1985)

Collective spin system

We consider $\,N\,$ electronic spins (e.g. a ferromagnetic crystal) in an external magnetic field $\,B_z$.

It is well described by the Heisenberg model:


$$\mathcal{H}_{mag} = -2\mu_B B_z \sum_{i} \hat{S}_{(i)}^z - \sum_{i,j} J_{ij} \hat{\mathbf{S}}_{(i)} \cdot \hat{\mathbf{S}}_{(j)}$$

i=1...N specify the sites of spins.

 $J_{ij}\,$: coupling constants between spins.

Axion-magnon resonance

We consider the effect of the axion DM on the $\,N\,$ spin system

Then, the hamiltonian is given by

$$\mathcal{H} = -2\mu_B \sum_{i} \hat{m{S}}_i \cdot (m{B} + m{B}_a) - \sum_{i,j} J_{ij} \hat{m{S}}_i \cdot \hat{m{S}}_j$$

effective magnetic field from the axion DM

Magnon excitation

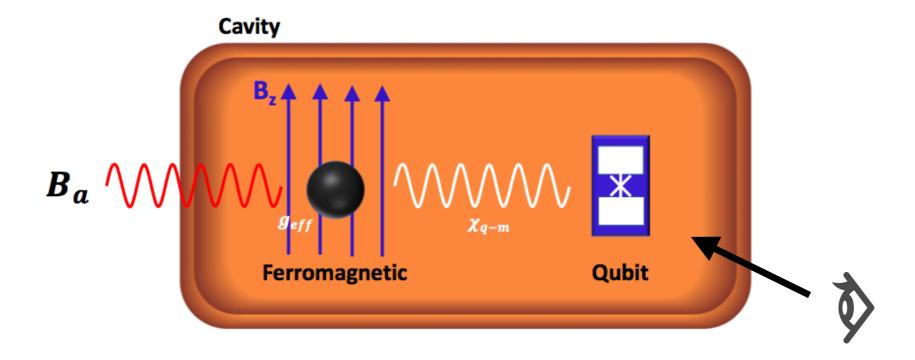
$$\mathcal{H} = -2\mu_B \sum_i \hat{m{S}}_i \cdot (m{B} + m{B}_a) - \sum_{i,j} J_{ij} \hat{m{S}}_i \cdot \hat{m{S}}_j$$

Holstein-Primakoff transformation

$$\mathbf{B}_a(t, \mathbf{x}) \simeq \mathbf{B}_a(t) = \frac{\mathbf{B}_a}{2} \left(e^{-iw_a t} + e^{iw_a t} \right)$$

$$\mathcal{H} \simeq 2\mu_B B_z \hat{c}_{k=0}^{\dagger} \hat{c}_{k=0} + 2\mu_B \frac{B_a \sin \theta}{4} \sqrt{N} \left(\hat{c}_{k=0}^{\dagger} e^{-i\omega_a t} + \hat{c}_{k=0} e^{i\omega_a t} \right)$$

$$+ \sum_{i=1..N} \mathcal{H}(\hat{c}_{k=i})$$


- The coupling constant is effectively increased by $\sqrt{N} \sim \sqrt{10^{20}} \sim 10^{10}$.
 - The axion DM can cause the resonance of the uniform mode $\,(k=0)\,$ of the magnon if $\omega_m=\omega_a \; (\omega_m=2\mu_B B_z)$.

Experiment

We tried to measure the quantum state of a magnon with qubit

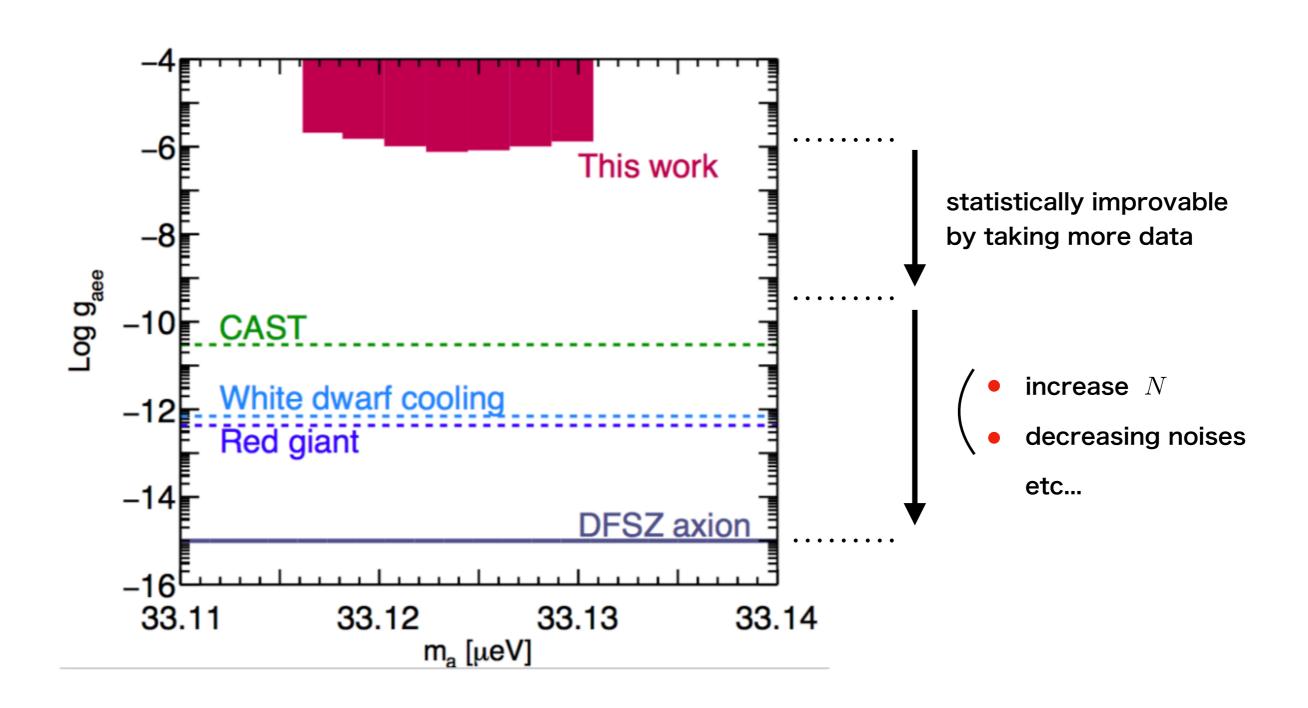
qubit: A two-state system

(Tomonori. Ikeda, Al, Kentaro Miuchi, Jiro Soda, Hisaya Kurashige, Yutaka Shikano, arXiv: 2102.08764 [hep-ex])

This detection method enables us to operate quantum nondemolition detection of the magnon with the qubit!

Upper limit

We reanalyzed data of a magnon experiment for other purpose (D. L-Quirion, et al., (2017) and found no evidence of the axion DM



Tomonori. Ikeda, Al, Kentaro Miuchi, Jiro Soda, Hisaya Kurashige, Yutaka Shikano (2020)

$$B_a < 4.1 \times 10^{-14} \ [T]$$
 or $g_{aee} < 1.3 \times 10^{-6}$

at
$$m_a = 33$$
 μeV

Upper limit

Summary

- QCD axion is a strong candidate for DM
- Interaction between an axion and a magnon, which is collective spin excitation of electrons, was studied
 - Axion-magnon coupling gets effective factor $$\sqrt{N}$$ Axion DM can excite magnons resonantly
- We reanalyzed data of a magnon experiment for other purpose and gave an upper limit $g_{aee} < 1.3 \times 10^{-6}$ at $m_a = 33~\mu {\rm eV}$
- Further efforts are desired to reach the theoretical prediction of g_{aee}

 - $\begin{array}{ll} \bullet & \mbox{increasing } N \\ \bullet & \mbox{decreasing noises of experiments} & \mbox{etc...} \end{array}$