Isotropic cosmic birefringence from early dark energy

Kai Murai
(U. Tokyo, final year of PhD course)

Collaborator: Eiichiro Komatsu(MPA), Toshiya Namikawa(IPMU)

Mini-workshop at MPA
2022/7/19

- Rotation of the CMB polarization (= CMB Birefringence)
T. Fujita, Y. Minami, KM, H. Nakatsuka

Phys. Rev. D 105 103519, arXiv: 2110.03228
T. Fujita, KM, H. Nakatsuka, S. Tsujikawa

Phys. Rev. D 105 103518, arXiv: 2203.03977

This talk

"Isotropic cosmic birefringence from early dark energy"
E. Komatsu, KM, T. Namikawa

In preparation

- Big Bang Nucleosynthesis
- Primordial black holes
- Axion-gauge dynamics in inflation
I. Cosmic birefringence
II. Early dark energy
III. CB from EDE
IV. Summary

Contents

I. Cosmic birefringence
II. Early dark energy
III. CB from EDE
IV. Summary

Cosmic birefringence

- Cosmic birefringence

Cosmic birefringence is a rotation of the plane on linear polarization in CMB.

CMB polarization is decomposed into Parity-even E mode
Parity-odd B mode

Cosmic birefringence mixes E and B modes:

Cosmic birefringence

- Parity violating signal in CMB

New analysis of the Planck data reported "cosmic birefringence".
[Minami \& Komatsu(2020)]
The measured cosmic birefringence is considered to be

(isotropic

(independent of the photon frequency
The isotropic rotation angle is estimated as

$$
\beta=0.342_{-0.091^{\circ}}^{+0.094^{\circ}} \text { at } 68 \% \text { C.L. [Eskilt \& Komatsu (2022)] }
$$

This signal indicates the existence of new physics!

Cosmic birefringence

■ Cosmic birefringence from axion
Axion is a candidate of the origin of β.

$$
\mathscr{L}=-\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} g \phi F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

Dispersion relations for left/right circular polarization photons:

$$
\omega_{ \pm} \simeq k \mp \frac{g}{2}\left(\frac{\partial \phi}{\partial t}+\frac{\vec{k}}{k} \cdot \vec{\nabla} \phi\right)=k \mp \frac{g}{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

$\rightarrow \beta$ is represented by the difference of the axion field value:

$$
\beta(t)=-\frac{1}{2} \int_{t}^{t_{0}} \mathrm{~d} t\left(\omega_{+}-\omega_{-}\right)=\frac{g}{2}\left[\phi\left(t_{0}\right)-\phi(t)\right]
$$

Cosmic birefringence

■ Tomographic approach

CMB polarization mainly comes from

- Recombination ($z \sim 1090$)
- Reionization $(z \sim 7)$

Recombination

Contents

I. Cosmic birefringence
II. Early dark energy
III. CB from EDE
IV. Summary

Early dark energy

- Hubble tension

Hubble tension is a discrepancy of the value of H_{0} between the local measurement and early-universe predictions.

Hubble Space Telescope $74.03 \pm 1.42 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

Planck 2018
$67.4 \pm 0.5 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

Early dark energy

■ Idea of Early dark energy [Karwal \& Kamionkowski (2016)]

Increase $H(z)$ at $z \gtrsim z_{\star}$
\rightarrow Decrease r_{s}^{\star} and then D_{A}^{\star}
\rightarrow The inferred value of H_{0} increases.

Early dark energy

■ Early dark energy model
EDE must satisfy the followings:

- Relevant at matter-radiation equality
- Behaves like dark energy at early times
- Dilutes faster than the matter after z_{\star}

An EDE model includes a field with a potential:

$$
V_{\mathrm{cos}}^{(n)} \equiv m^{2} f^{2}\left[1-\cos \left(\frac{\phi}{f}\right)\right]^{n}, \quad n \geq 2
$$

[Poulin, Smith, Karwal, Kamionkowski (2019)]
Around $\phi=0, V(\phi)$ is approximated $\propto \phi^{2 n}$.

$$
\rho_{\phi} \propto a^{-6 n /(n+1)}
$$

[Turner (1983)]

Early dark energy

■ Best-fit for EDE

We consider a model with $V=m^{2} f^{2}\left[1-\cos \left(\frac{\phi}{f}\right)\right]^{3}$.

Using a profile likelihood, the favored value of $f_{\text {EDE }}$ is estimated:

$$
\begin{array}{r}
f_{\mathrm{EDE}}=0.072_{-0.060}^{+0.071} \\
\\
\text { at } 95 \% \text { C.L. }
\end{array}
$$

[Herold, Ferreira, Komatsu (2022)]

Contents

I. Cosmic birefringence
II. Early dark energy
III. CB from EDE
IV. Summary

Isotropic CB from EDE

■ Implementation

In the previous work, the effect of β has been implemented
with an input data of $\phi(\eta)$. [Nakatsuka, Namikawa, Komatsu (2022)]

$$
\begin{aligned}
& \frac{{ }_{ \pm 2} \Delta_{P, l}\left(\eta_{0}, q\right)}{}=-\frac{3}{4} \sqrt{\frac{(l+2)!}{(l-2)!}} \int_{0}^{\eta_{0}} \mathrm{~d} \eta \tau^{\prime} e^{-\tau(\eta)} \Pi(\eta, q) \frac{j_{l}(x)}{x^{2}} e^{ \pm 2 i \beta(\eta)} \\
& \text { Fourier of } Q, U \\
& \Delta_{E, l}(q) \pm i \Delta_{B, l}(q) \equiv-{ }_{ \pm 2} \Delta_{P, l}\left(\eta_{0}, q\right) \quad \beta(\eta)=\frac{g}{2}\left[\phi\left(\eta_{0}\right)\right.
\end{aligned}
$$

To deal with EDE, $\phi(\eta)$ should be solved consistently with the background cosmology.

We extend the code to solve following CLASS_EDE code.

Isotropic CB from EDE

■ EB angular power spectrum

We consider the EDE model with the best-fit parameters for
$f_{\mathrm{EDE}}=0.01,0.07$, and 0.14 .
Here, we use $g=M_{\mathrm{Pl}}^{-1}$ and $C_{l}^{E B}$ scales as $\propto g$.

Isotropic CB from EDE

- EB angular power spectrum

$C_{l}^{E B}$ is not proportional to $C_{l}^{E E}$.
The peak is shifted by $\Delta l \gtrsim 10$.

Isotropic CB from EDE

■ EB angular power spectrum

For $f_{\mathrm{EDE}}=0.14$, the sign of $C_{l}^{E B}$ flips in mid l.

Isotropic CB from EDE

- EB angular power spectrum

Isotropic CB from EDE

- EB angular power spectrum

Rough translation into $\beta: \frac{\operatorname{Max}\left[C_{l}^{E B}\right]}{\operatorname{Max}\left[C_{l}^{E E}\right]}=\frac{1}{2} \sin \left(4 \beta_{\mathrm{eff}}\right)$

We obtain $\beta_{\text {eff }}=\beta_{\text {obs }}$ with $g M_{\mathrm{Pl}}=\{1.2,0.42,0.47\}$.
$\rightarrow g=\mathcal{O}\left(M_{\mathrm{Pl}}^{-1}\right)$ is favored.

$f_{\text {EDE }}$
-0.01
-0.07

- 0.14

Contents

I. Cosmic birefringence
II. Early dark energy
III. CB from EDE
IV. Summary

- I extended the modified CLASS codes and calculated the EB power spectrum when an EDE field induces cosmic birefringence.
- For all $f_{\text {EDE }}$ I considered,
the EB spectrum is not proportional to the EE spectrum.
- Especially, $f_{\mathrm{EDE}}=0.14$ has a distinct shape.
- Future direction:

Anisotropic CB
Including lensing

