

with LSS and ISW data: results and open issues LMU Munich & Excellence Cluster

Outline

- Large-scale structure and non-Gaussianity: non-local, scale-dependent bias
- Updated LSS + integrated Sachs-Wolfe (ISW) data: Luminous Red Galaxies from BOSS & systematics
- Combined measurement of f_{NL} from LSS+ISW data & systematics
- Extension to galaxy clusters
- Forecasts with DES and Euclid
- Conclusions

Collaborators: A. Ross, R. Crittenden, W. Percival, B. Nichol, C. Porciani, J. Weller, M. Kilbinger, A. Mana, G. Hütsi

Constraining (?) the early universe

Constraining (?) the early universe

- Many models available (-> S. Yamaguchi's talk)
 - single field
 - many fields
 - slow or fast decay
 - various possible kinetic terms
 - cyclic/ekpyrotic models...

Constraining (?) the early universe

- Many models available (-> S. Yamaguchi's talk)
 - single field
 - many fields
 - slow or fast decay
 - various possible kinetic terms
 - cyclic/ekpyrotic models...
- Simplest single-field models predict:
 - 1. near-flatness √
 - 2. nearly scale-invariant power spectrum \checkmark
 - 3. curvature perturbations only ~ [Valiviita & TG 09]
 see talk by D. Langlois

*S*NL

- 4. nearly Gaussian distribution ?
- Other models: many configurations: kernel W. Φ: primordial potential; φ Gaussian. Amount of NG: skewness f_{NL}

$$\Phi(\mathbf{x}, z_*) = \varphi(\mathbf{x}, z_*) + (f_{\mathsf{NL}} * W * \varphi * \varphi) (\mathbf{x}, z_*)$$

Thursday, 8 November 12

Non-Gaussianity and the LSS

[Millennium run, Springel et al. 09]

Non-Gaussianity and the LSS

[Millennium run, Springel et al. 09]

- Dark matter perturbations $\delta_m > d.m.$ haloes $\delta_h > galaxies \, \delta_g$
 - halo mass function: halo bias, $\delta_h = b_h \, \delta_m$
 - halo occupation distribution: galaxy bias, $\delta_g = b_g \delta_m$

Non-Gaussianity and the LSS

- Dark matter perturbations $\delta_m > d.m.$ haloes $\delta_h > galaxies \, \delta_g$
 - halo mass function: halo bias, $\delta_h = b_h \, \delta_m$
 - halo occupation distribution: galaxy bias, $\delta_g = b_g \, \delta_m$
- PNG: scale-dependent, non-local b [Dalal et al 07, +]
- Spectra (gal-gal) ~ b² and (gal-CMB) ~
 b: constraints on PNG! [Slosar et al 08, Xia et al 10, 11, Ross et al. 12]
- Also small effect on P_{matter} from bispectrum [Taruya et al 08]

- Data maps, pixellated
 - density: 6 galaxy catalogues: 2MASS, SDSS (main gal DR8, LRG, QSO), NVSS, HEAO
 - temperature: WMAP7 (ILC, Q, V, W)

- Data maps, pixellated
 - density: 6 galaxy catalogues: 2MASS, SDSS (main gal DR8, LRG, QSO), NVSS, HEAO
 - temperature: WMAP7 (ILC, Q, V, W)
- Masks
 - survey geometry (DR8: 24% increase)
 - foregrounds:
 - extinction, galactic plane cut + bright sources (NVSS, HEAO)

- Data maps, pixellated
 - density: 6 galaxy catalogues: 2MASS, SDSS (main gal DR8, LRG, QSO), NVSS, HEAO
 - temperature: WMAP7 (ILC, Q, V, W)

• Masks

- survey geometry (DR8: 24% increase)
- foregrounds:
 - extinction, galactic plane cut + bright sources (NVSS, HEAO)
- Observables: 2D two-point correlations

 $\begin{array}{lll} \mathsf{W}^{\mathit{ISWg}}(\vartheta) &\equiv & \langle \Theta^{\mathit{ISW}}(\hat{\mathbf{n}}_1) \delta^{\mathit{g}}(\hat{\mathbf{n}}_2) \rangle & \propto b \\ \mathsf{W}^{\mathit{gg}}(\vartheta) &\equiv & \langle \delta^{\mathit{g}}(\hat{\mathbf{n}}_1) \delta^{\mathit{g}}(\hat{\mathbf{n}}_2) \rangle & \propto b^2 \end{array}$

Measured (Tg) correlations

- Non-zero only with dark energy
- Covariance: Monte Carlos
- ~ agrees with LCDM & older data
- Total S/N = 4.4 σ
 (± 0.4) (single amplitude fitting)

[TG et al. 12, MNRAS]

- Thomas et al. 10 MegaZ vs Ross et al. 11
 SDSS DR8 CMASS
- Similar redshift range, Ross et al. South coverage (DR8)
- Ross et al.: correction for stellar systematics
 - Fewer galaxies observed where lots of stars!
 - Large proportion (15%) with BOSS spectra

- Thomas et al. 10 MegaZ vs Ross et al. 11
 SDSS DR8 CMASS
- Similar redshift range, Ross et al. South coverage (DR8)
- Ross et al.: correction for stellar systematics
 - Fewer galaxies observed where lots of stars!
 - Large proportion (15%) with BOSS spectra
- ACF: Thomas et al. show more excess power on large scales --> stars?

- Thomas et al. 10 MegaZ vs Ross et al. 11 SDSS DR8 CMASS
- Similar redshift range, Ross et al. South coverage (DR8)
- Ross et al.: correction for stellar systematics
 - Fewer galaxies observed where lots of stars!
 - Large proportion (15%) with BOSS spectra/
- ACF: Thomas et al. show more excess power on large scales --> stars?
- CCF: Ross et al. lower, in agreement with LCDM! :-)

- Thomas et al. 10 MegaZ vs Ross et al. 11 SDSS DR8 CMASS
- Similar redshift range, Ross et al. South coverage (DR8)
- Ross et al.: correction for stellar systematics
 - Fewer galaxies observed where lots of stars!
 - Large proportion (15%) with BOSS spectra
- ACF: Thomas et al. show more excess power on large scales --> stars?
- **CCF**: Ross et al. lower, in agreement with LCDM! :-)
- If no star correction, same area: higher A/CCF

- Thomas et al. 10 MegaZ vs Ross et al. 11 SDSS DR8 CMASS
- Similar redshift range, Ross et al. South coverage (DR8)
- Ross et al.: correction for stellar systematics
 - Fewer galaxies observed where lots of stars!
 - Large proportion (15%) with BOSS spectra
- ACF: Thomas et al. show more excess power on large scales --> stars?
- CCF: Ross et al. lower, in agreement with LCDM! :-)
- If no star correction, same area: higher A/CCF

ACF at large scales: tricky

LRG systematics

LRG systematics

- Frequency independence:
 Very stable CCF, with all WMAP bands!
 - Evidence for superior quality of Ross et al. data
 - Stellar contamination negligible
- Total ISW S/N down to 4.0;
 better agreement with LCDM

LRG systematics

Full bias analysis of LSS + ISW data & f_{NL}

Full bias analysis of LSS + ISW data & f_{NL}

- Measure (local) f_{NL} via b
- Not only **⟨Tg⟩** ∞ b, but also ALL
 ⟨gg⟩ ∞ b² correlations
- **Data**: all 27 2-pt functions!

Full bias analysis of LSS + ISW data & f_{NL}

- Measure (local) f_{NL} via b
- Not only **⟨Tg⟩** ∞ b, but also ALL
 ⟨gg⟩ ∞ b² correlations
- Data: all 27 2-pt functions!
- For each catalogue we model $b_i(k,z) = b_i(z) + \Delta b (k,z)$
- Several models for Gaussian b:
 - constant $b_i(z) = b_{0i}$
 - evolving $b_i(z) = 1 + (b_{0i} 1) / D(z)$

two-point correlation functions

nuisance parameters

 Full Covariance Matrix (351x351) from 10,000 Monte Carlo mocks

Correlation matrix = Tg gg 0 **8.0** 50 0.6 100 0.4 150 0.2 0 200 -0.2 250 300 350 350 300 50 100 150 200 250 0

- Full Covariance Matrix (351x351) from 10,000 Monte Carlo mocks
- Theory models: with modified Camb code
- Monte Carlo likelihood analysis, marginalising over (nestled sampling)
 - cosmology (7 params)
 - 6 nuisance parameters b_{0i}
 - 3 nuisance parameters κ_i: stellar contamination

- Full Covariance Matrix (351x351) from 10,000 Monte Carlo mocks
- Theory models: with modified Camb code
- Monte Carlo likelihood analysis, marginalising over (nestled sampling)
 - cosmology (7 params)
 - 6 nuisance parameters b_{0i}
 - 3 nuisance parameters κ_i: stellar contamination

at face value, **42 < f**_{NL} **< 68 !!!** @ 95% c.l.

Further study to understand this...

Systematics!

 Stellar contamination fraction κ (SDSS samples)

QSO systematics

QSO systematics

 Stellar contamination prior does not explain excess power

[plots by A. Ross]

QSO systematics

- Stellar contamination prior does not explain excess power
- Splitting by photo-z: worse
 - Higher excess power at high z
 - Cut? But then correlation densityextinction, and other systematics
- Splitting by i-mag also unstable
 - Large-angle ACF fluctuates

[plots by A. Ross]

QSO systematics

- Stellar contamination prior does not explain excess power
- Splitting by photo-z: worse
 - Higher excess power at high z
 - Cut? But then correlation densityextinction, and other systematics

Φ

- Splitting by i-mag also unstable
 - Large-angle ACF fluctuates
- Implies some systematic relationships
 - should depend on color / magnitude
 - not clear calibration issues?
- QSO ACF unreliable on large scales too faint. BOSS cut is at mag i<19.9, these are at $i \sim 21 + -->$ discarded. 12

• Known problem: number density changes in dec

- Known problem: number density changes in dec
- Large effects on ACF. Corrections:
 - Splitting in dec bands and rescaling n density [Boughn & Crittenden 01, K. Smith et al. 08]
 - Same, forcing the same Flux distribution
 - Splitting in larger pixels, rescale n
 - Cutting Flux < 10 mJy [Blake et al. 04, Xia et al.
 11]
 - Give infinite variance to m=0 modes [K. Smith et al. 07] - best but difficult in real space
 - R.a. reshuffling of the data fixing their dec to get weighting random catalog

- Known problem: number density changes in dec
- Large effects on ACF. Corrections:
 - Splitting in dec bands and rescaling n density [Boughn & Crittenden 01, K. Smith et al. 08]
 - Same, forcing the same Flux distribution
 - Splitting in larger pixels, rescale n
 - Cutting Flux < 10 mJy [Blake et al. 04, Xia et al.
 11]
 - Give infinite variance to m=0 modes [K. Smith et al. 07] - best but difficult in real space
 - R.a. reshuffling of the data fixing their dec to get weighting random catalog
- Arbitrary, results vary; also smaller r.a. effect (lower n at ra > 240)
- Discard this auto-correlation as well
 13

 Non-zero f_{NL} driven by NVSS, QSO autocorrelation

- Non-zero f_{NL} driven by NVSS, QSO autocorrelation
- Not all data equally reliable: 3 results

full,unreliable: **42 < f_{NL} < 68** @95%

What can we trust?

- Non-zero f_{NL} driven by NVSS, QSO autocorrelation
- Not all data equally reliable: 3 results
 - Full data

- Non-zero f_{NL} driven by NVSS, QSO autocorrelation
- Not all data equally reliable: 3 results
 - Full data
 - Ultra-conservative: drop 2MASS, main gal, and all ACF except BOSS LRGs

full,unreliable: **42 < f_{NL} < 68** @95%

ultra-conservative: **-34 < f**_{NL} **< 38** @95%

- Non-zero f_{NL} driven by NVSS, QSO autocorrelation
- Not all data equally reliable: 3 results
 - Full data

14

- Ultra-conservative: drop 2MASS, main gal, and all ACF except BOSS LRGs
- Fair: drop only NVSS, QSO auto-correlation

full,unreliable: **42 < f_{NL} < 68** @95% *ultra-conservative:* **-34 < f**_{NL} **< 38** @95% *'fair':* **-18 < f_{NL} < 22** @95% SDSS SDSS SDSS NVSS 2MASS HEAO gal LRG QSO CMB **ZMASS** two-point correlation functions NVSS LRG Gal HEAO qso

2MASS

Gal

LRG

ϑ [0 - 12 deg]

NVSS

HEAO

QS0

- Non-zero f_{NL} driven by NVSS, QSO autocorrelation
- Not all data equally reliable: 3 results

Full data

- Ultra-conservative: drop 2MASS, main gal, and all ACF except BOSS LRGs
- Fair: drop only NVSS, QSO auto-correlation
- Cross-correlations safer than autocorrelations, keep them
- if $f_{NL}(k) = f_{NL, pivot} (k / k_{pivot})^n_{fNL}$:
- All assuming $g_{NL} = 0$.

 $n_{fNI} = 1.7 \pm 1.1 @95\%$

full,unreliable: **42 < f_{NL} < 68** @95%

ultra-conservative: **-34 < f**_{NL} **< 38** @95%

'fair': **-18 < f**_{NL} **< 22** @95%

Extension to galaxy clusters [A. Mana, TG, et al. in prep]

Extension to galaxy clusters [A. Mana, TG, et al. in prep]

- Largest bound structures
- Probe high-mass tail of mass function dn/ dM (we use Tinker et al. 10 + LoVerde et al. 08)
- High bias: great for PNG

Extension to galaxy clusters [A. Mana, TG, et al. in prep]

- Largest bound structures
- Probe high-mass tail of mass function dn/ dM (we use Tinker et al. 10 + LoVerde et al. 08)
- High bias: great for PNG
- Observables:
 - Counts N_i in richness bin i (N₂₀₀: # of red galaxies at R < R₂₀₀)
 - nuisance params: L_1 , L_2 , $\sigma_{N|M}$
 - Masses from weak lensing data
 - nuisance params: β
 - Power spectrum
 - nuisance params: σ_z, B, q_{NL}
- $\frac{dM}{w(N_{200})}$ $N_i = \int dz \int dN_{200} \frac{dn}{dM}$ mass function richness Jacobian bin of scaling selection relationship $P(k) = b_{\text{eff}}^2 (1 + q_{\text{NL}} k^{3/2}) f(k) P_{\text{lin}}(k)$ simple non-lin módel photo-z smoothing

[plots by A. Mana]

- Data and covariances:
 - Counts by Rozo et al. 09
 - Masses by Johnston et al. 07
 - **P(k)** by Huetsi 09

 14,000 clusters to z < 0.3 from SDSS-DR7 [Koester et al. 07] 40

- Data and covariances:
 - Counts by Rozo et al. 09
 - Masses by Johnston et al. 07
 - **P(k)** by Huetsi 09
- MCMC analysis over:
 - Cosmology (σ₈, Ω_m, f_{NL})
 - Nuisance parameters (L₁, L₂, $\sigma_{N|M}$, β , σ_z , B, q_{NL})

Counts+Masses: agree with Rozo et al. 09 adding PS: significant improvement!

Primordial NG with DES and Euclid

- Combining: lensing + galaxy clustering
- Following Hu & Jain 04
- Including primordial non-Gaussianity
 - **DES**: Fermilab-led mission
 - Starting now in Chile
 - Photo-z, deep to z~1.5
 - 300 M galaxies
 - 5,000 sq. deg
- Euclid: approved ESA mission
 - In L2 orbit, launch ~2019
 - Imaging (vis+IR): 2 bn galaxies
 - Slitless **spectra**: 80 M galaxies
 - 15,000-20,000 sq. deg

Results [TG et al. 11]

Combined lensing + 2D gal spectrum Fisher forecast:

$$C_{l}^{\epsilon_{i}\epsilon_{j}} \qquad C_{l}^{g_{i}g_{j}} \qquad D_{l\alpha}^{\epsilon_{i}\epsilon_{j}} = \frac{\partial C_{l}^{\epsilon_{i}\epsilon_{j}}}{\partial \vartheta_{\alpha}} \qquad \mathbf{C}^{\mathbf{a}}_{\alpha}$$

$$F_{\alpha\beta}^{x} = f_{\text{sky}} \sum_{l=l_{\text{min}}}^{l_{\text{max}}} \frac{(2l+1)}{2} \operatorname{Tr} \left[\mathbf{D}_{l\alpha}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \mathbf{D}_{l\beta}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \right]_{\mathbf{C}}^{\mathbf{a}}$$
[Hu & Jain 04]

c

ъ

- includes (lens-gal) spectrum
- Red: with Planck TT priors
- Euclid accuracy on local f_{NL}: ±3
- **DES:** accuracy on f_{NL} ~ ±8
- Running: $n_{fNL} \sim \pm 0.12$ if $f_{NL} = 30$
- Main issue will be systematics!

Thursday, 8 November 12

Results [TG et al. 11]

Combined lensing + 2D gal spectrum Fisher forecast:

$$C_{l}^{\epsilon_{i}\epsilon_{j}} \qquad C_{l}^{g_{i}g_{j}} \qquad D_{l\alpha}^{\epsilon_{i}\epsilon_{j}} = \frac{\partial C_{l}^{\epsilon_{i}\epsilon_{j}}}{\partial \vartheta_{\alpha}} \qquad \mathbf{C}^{\mathbf{a}}$$

$$F_{\alpha\beta}^{x} = f_{\text{sky}} \sum_{l=l_{\text{min}}}^{l_{\text{max}}} \frac{(2l+1)}{2} \operatorname{Tr} \left[\mathbf{D}_{l\alpha}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \mathbf{D}_{l\beta}^{x} \left(\tilde{\mathbf{C}}_{l}^{x} \right)^{-1} \right]_{\mathbf{C}}^{\mathbf{a}}$$
[Hu & Jain 04]

-C

- includes (lens-gal) spectrum
- Red: with Planck TT priors
- Euclid accuracy on local f_{NL}: ±3
- **DES:** accuracy on $f_{NL} \sim \pm 8$ •
- Running: $n_{fNL} \sim \pm 0.12$ if $f_{NL} = 30$
- Main issue will be systematics!

Critical assumption for f_{NL} : $b_{fiducial}(z) \sim (1+z)^{1/2}$, similar to Orsi et al. 09.

Conclusions & Future Work

- LSS+ISW data updated: consistent with LCDM
- Full likelihood analysis: use all ACF/CCF (full covariance)
- Non-Gaussianity: $-18 < f_{NL} < 22$ $n_{fNL} = 1.7 \pm 1.1$ @95%
- but systematics are a big issue: hard to trust some ACF, cross-correlations are safer

Conclusions & Future Work

- LSS+ISW data updated: consistent with LCDM
- Full likelihood analysis: use all ACF/CCF (full covariance)
- Non-Gaussianity: $-18 < f_{NL} < 22$ $n_{fNL} = 1.7 \pm 1.1$ @95%
- but systematics are a big issue: hard to trust some ACF, cross-correlations are safer
- BOSS: better systematics control systematics control
 DR8 QSO?
 LSS+ISW analysis with 3D clustering
 DES: f_{NL} ± 8 gal-gal, CMB-gal, CMB-shear
- **Euclid**: $f_{NL} \pm 3$... if systematics under control

