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The Aftermath of the Bang “Although it is called the Big Bang Theory, it 
is not really the theory of a bang at all. It is 
only the theory of the aftermath of a bang. ’’ 
Alan Guth
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Fig. 2.— The band power measurements used.

Ων , corresponding to neutrinos massive enough to be fairly
nonrelativistic at the relevant redshifts, so the inclusion of
neutrinos will, among other things, weaken the lower limit
on Ωcdm.

Another weakness of the T99 analysis was that it as-
sumed that the relative amplitude r ≡ At/As of gravity
waves was linked to the tensor spectral index by the in-
flationary consistency relation r = −7nt (Liddle & Lyth
1992), although one of the most exciting applications of
CMB data will be to test this relation. We will remedy
both of these problems by extending our parameter space
to N = 10 dimensions, including both Ων and nt as free
parameters.

Finally, as we will discuss at length below, there are a
number of areas where accuracy has been unsatisfactory
and can be substantially improved.

The rest of this paper is organized as follows. We de-
scribe our method in Section 2, apply it to the available
data in Section 3 and summarize our conclusions in Sec-
tion 4. Some technical details regarding marginalization
are derived in the Appendix.

2. METHOD

2.1. The problem

Our data consists of the n = 65 band power mea-
surements δT 2

i listed in Table 1 and shown in Figure 2,
i = 1, ..., n. The band power measurement di ≡ δT 2

i
probes a weighted average of δT 2

" ≡ "(" + 1)C"/2π,

〈di〉 = 〈δT 2
i 〉 =

∑

"

1

"
W i

" δT
2
" , (1)

where W i
" is the band-power window function (distinct

from the variance window function; see Knox 1999). These
known weights W i

" reflect which angular scales the mea-
surement is sensitive to.

The power spectrum in turn depends on our vector of
cosmological parameters p in a complicated fashion C"(p)

that we use CMBfast to compute. The scatter in the rela-
tion between di and 〈di〉 due to detector noise and sample
variance is described by a likelihood function Li(di; C"(p)),
the probability distribution for di given p. If the errors in
the different data points were all independent, then the
combined likelihood of observing the set of all data given
p would be simply

L(data;p) =
n

∏

i=1

Li(di; C"(p)). (2)

This is complicated by the fact that some measurements
are correlated, as will be discussed in Section 2.7.

Our problem is to evaluate this likelihood function in
the 10-dimensional parameter space that p inhabits. To
obtain Bayesian constraints on individual parameters or
joint constraints on interesting pairs (such as Ωm and ΩΛ),
we then marginalize over the remaining parameters with
appropriate priors.

2.2. Breaking it into four sub-problems

If we had infinite computing resources, the solution
would be straightforward: compute the theoretical CMB
power spectrum C"(p) with the CMBfast software (Seljak
& Zaldarriaga 1996) and the corresponding likelihood at a
fine grid of points in the N -dimensional parameter space.
In practice, this is inconvenient. With M grid points in
each dimension, MN power spectra must be computed.
Even if we take M as low as 10, the amount of work thus
grows by an order of magnitude for each additional pa-
rameter. With 1 minute per power spectrum calculation,
N = 10 would translate to over 104 years of CPU time.

Fortunately, the underlying physics (see e.g. Hu et al.
1997 for a review) allows several numerical simplifications
to be made. We will adopt the approximation scheme
used in T99 with additional improvements as described
below. Our method conveniently separates into four sep-
arate steps.

• Step 1: Run CMBfast many times for three partic-
ular subsets of the parameter grid. The results are
three large files: one with tensor power spectra, one
with scalar power spectra for " ∼< 100 and one with
scalar power spectra for " ∼> 100.

• Step 2: Interpolate these spectra onto larger sub-
sets of the parameter grid. The results are two huge
files with 7-dimensional model grids, one for scalars
and one for tensors. These two files allow any power
spectrum in the full 10-dimensional model grid to be
computed almost instantaneously.

• Step 3: Compute and save the likelihood L for each
model.

• Step 4: Perform 10-dimensional interpolation and
marginalize to obtain constraints on individual pa-
rameters, constraints in the (Ωm, ΩΛ)-plane, etc.

Below we will describe each of these four steps in turn. Be-
fore doing this, however, it is interesting to contrast this
“huge grid” approach with an alternative strategy. Dodel-
son & Knox (2000) and Melchiorri et al. (2000) performed
their analyses without computing and storing such a grid.

Progress
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Fig. 4.— The SPT bandpowers (blue), WMAP7 bandpowers (orange), and the lensed ⇤CDM+foregrounds theory spectrum that
provides the best fit to the SPT+WMAP7 data shown for the CMB-only component (dashed line), and the CMB+foregrounds spectrum
(solid line). As in Figure 3, the bandpower errors shown in this plot do not include beam or calibration uncertainties.

for a departure from ⇤CDM, a systematic error in one
or more of the data sets, or simply a statistical fluctua-
tion. We assume the uncertainties reported for each of
the datasets are correct and combine them to produce
many of the results presented here.

6.5. SPT-only ⇤CDM constraints

We begin by examining parameter constraints from the
SPT bandpowers alone. The SPT-only parameter con-
straints provide an independent test of ⇤CDM cosmology
and allow for consistency checks between the SPT data
and other datasets. Because the scalar amplitude �2

R

and the optical depth ⌧ are completely degenerate for
the SPT bandpowers, we impose a WMAP7-based prior
of ⌧ = 0.088± 0.015 for the SPT-only constraints.
We present the constraints on the ⇤CDM model from

SPT andWMAP7 data in columns two to four of Table 3.
As shown in Figure 5, the SPT bandpowers (including
a prior on ⌧ from WMAP7) constrain the ⇤CDM pa-
rameters approximately as well as WMAP7. The SPT
and WMAP7 parameter constraints are consistent for

all parameters; ✓
s

changes the most significantly among
the five free ⇤CDM parameters, moving by 1.5� and
tightening by a factor of 2.2 from WMAP7 to SPT. The
SPT bandpowers measure ✓

s

extremely well by virtue of
the sheer number of acoustic peaks – seven – measured
by the SPT bandpowers. The SPT constraint on n

s

is
broader than the constraint from WMAP7 due to the
fact that WMAP7 probes a much greater dynamic range
of angular scales. Degeneracies with n

s

degrade the SPT
constraints on �2

R

, the baryon density and, to a lesser
extent, the dark matter density.

6.6. Combined ⇤CDM constraints

Next, we present the constraints on the ⇤CDM
model from the combination of SPT and WMAP7 data.
As previously mentioned, we will refer to the joint
SPT+WMAP7 likelihood as the CMB likelihood. We
then extend the discussion to include constraints from
CMB data in combination with BAO and/or H0 data.
We present the CMB constraints on the six ⇤CDM

parameters in the fourth column of Table 3. Adding
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entire COBE signal due to gravity waves. Although this
particular model is ruled out by other constraints — for
instance, primordial black hole abundance (Green et al.
1997) and spectral distortions (Hu et al. 1994) give upper
bounds ns ∼< 1.3) — it illustrates the importance of fitting
for all 10 parameters jointly. Indeed, it is the inclusion of
gravity waves in our models that makes the constraints on
ns so weak.

The 1-dimensional likelihood functions for six of the best
constrained parameters are shown in Figure 5, marginal-
ized over the other 9 parameters. Although none of these
parameters are very tightly constrained, it is encouraging
that CMB observations are already sufficiently powerful
to place upper and lower limits on Ωm, ΩΛ and ns at the
2 − σ level. Because ωcdm and ων are by definition non-
negative, these density parameters are also bounded from
both sides. On the other hand, better data will be required
to place interesting constraints on τ , since this parameter
is almost degenerate with the overall normalization (see,
e.g., Eisenstein et al. 1999). The best constrained param-
eter so far is seen to be the spatial curvature Ωk, with
−0.24 < Ωk < 0.38 at 95% confidence. For comparison,
using Figure 2 in Dodelson & Knox (2000) to read off the

point where the likelihood drops to e−22/2 ≈ 0.14 gives the
95% upper limit Ωk < 0.38. Although the exact numerical
agreement is likely to be coincidental (since we use more
data, etc), this is nonethetheless very reassuring evidence
that the basic result is robust.

Because of the well-known angular diameter distance
degeneracy, where increasing Ωk shifts the acoustic peaks
to the right and increasing ΩΛ can shift them back to the
left, we also plot our constraints marginalized onto the 2-
dimensional (Ωm, ΩΛ)-plane. Figure 6 shows the results
using all the data, and Figures 7– 9 shown the constraints
from various subsets that will be described below. In all
cases, the shaded regions show what is ruled out at 95%
confidence (2−σ). For our 2-dimensional parameter space,
this corresponds to ∆χ2 = 6.18 (not 4), as in Press et al.
(1992) §15.6.

We show four nested contours. The least constrain-
ing one is when all 10 parameters are treated as un-
known. The second includes our Hubble parameter prior
h = 0.65 ± 0.07. The third (what we call our “basic re-
sult”) adds the nucleosynthesis constraint ωb ≈ 0.02 and
the fourth imposes r = τ = 0. Although the first two
priors are observationally well-motivated, the last one is
completely ad hoc, and has only been included to illus-
trate the importance of including reionization and gravity

Table 2 – Maximum-likelihood values and 95% confidence limits

10 free parameters h & ωb prior
Quantity Min Best Max Min Best Max
τ 0.0 0.0 − 0.0 0.0 −
Ωk −1.74 −1.03 0.49 −0.24 .09 0.38
ΩΛ − .16 − −0.19 .67 0.89
h2Ωcdm 0.0 .53 − 0.0 .036 0.30
h2Ωb .11 .13 − .02 .02 .02
h2Ων 0.0 .012 − 0.0 .051 .29
ns .55 1.69 − 0.80 1.05 1.53
nt − 0.00 − − 0.03 −

Fig. 5.— The marginalized likelihood is shown for six individual
parameters using all 65 band power measurements and priors only
from nucleosynthesis (h2Ωb = 0.02) and the Hubble parameter (h =
0.65±0.07). The 2σ limits (see Table 2) are roughly where the curves
cross the horizontal lines.

Fig. 6.— The regions in the (Ωm,ΩΛ)-plane that are ruled out at
2σ using all the data are shown using no priors (red/dark grey), the
prior h = 0.65±0.07 (orange red/grey), the additional nucleosynthe-
sis constraint h2Ωb = 0.02 (orange/light grey) and the additional
constraints r = τ = 0 (yellow/very light grey).

waves in analyses of this kind.
When removing a prior constraint (ωb = 0.02) from our

basic result, we reduce all χ2-values by unity before plot-
ting the corresponding contour, to account for the added
degree of freedom. Similarly, we subtract 2 when dropping
both constraints and add 2 when imposing τ = r = 0.

Figure 6 shows that the CMB data alone is able to rule
out very open (Ωm ∼< 0.4) models with ΩΛ = 0. Adding
the h-constraint tightened the limits somewhat, mainly
on very closed models. A more important prior at at
this stage is that from nucleosynthesis, which helps elim-
inate most of the remaining closed models and places the
first lower limit on ΩΛ. This makes the allowed region in
the (Ωm, ΩΛ)-plane bounded, which is important: other-
wise all other constraints, which are marginalized over ΩΛ,
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Fig. 7.— The low-redshift information imprinted on the CMB by gravitational lensing, along with the other information in the CMB
anisotropy power spectrum, enables the placement of tight constraints on the mean curvature of the observable Universe. The addition of
low-redshift probes further tighten CMB-only constraints on the mean curvature. Left panel: The one-dimensional marginalized constraints
on ⌦k from SPT+WMAP7 (black solid line), SPT+WMAP7+H0 (orange dashed line), SPT+WMAP7+BAO (black dotted line),
and SPT+WMAP7+BAO+H0 (blue dot-dashed line). The SPT+WMAP7 datasets measure the mean curvature of the observable
universe to a precision of ⇠1.5%, while combining SPT,WMAP7, and either H0 or BAO data reduces the uncertainty by a factor of ⇠3.
Right panel: The two-dimensional constraints on ⌦M and ⌦⇤ from the SPT+WMAP7 data alone. The SPT+WMAP7 data rule out
⌦⇤ = 0 at 5.4�.

TABLE 4
Constraints on ns and r from CMB and external datasets

Model Parameter CMB CMB+H0 CMB+BAO CMB+H0+BAO
(SPT+WMAP7)

⇤CDM ns 0.9623± 0.0097 0.9638± 0.0090 0.9515± 0.0082 0.9538± 0.0081

⇤CDM+r ns 0.969± 0.011 0.9702± 0.0097 0.9553± 0.0084 0.9577± 0.0084
r (95% C.L.) < 0.18 < 0.18 < 0.11 < 0.11

tensor perturbations well characterized by a power law
in wavenumber k,

�2
R

(k) = �2
R

(k0)

✓
k

k0

◆n
s

�1

(22)

�2
h

(k) = �2
h

(k0)

✓
k

k0

◆n
t

. (23)

Here �2
R

(k0) is the amplitude of scalar (density) pertur-
bations specified at pivot scale k = k0, with scale de-
pendence controlled by the index n

s

, while �2
h

(k0) is the
amplitude of tensor (gravitational wave) perturbations
specified at the same pivot scale, with scale dependence
set by n

t

. The amplitude of the tensor perturbation spec-
trum is expressed in terms of the tensor-to-scalar ratio

r =
�2

h

(k)

�2
R

(k)

����
k=0.002Mpc�1

. (24)

For single-field models in slow-roll inflation, n
t

and r are
related by a consistency equation (Copeland et al. 1993;

Kinney et al. 2008):

n
t

= �r/8 . (25)

The tensor and scalar perturbations predicted by such
models of inflation can thus be characterized by the three
parameters n

s

, �2
R

(k0), and r.
In the following, we first consider constraints on n

s

as-
suming r = 0, and then on both n

s

and r. We then
compare the constraints in the n

s

-r plane to predictions
of inflationary models. Constraints on the scale depen-
dence of the spectral index (dn

s

/d ln k) are considered in
the companion paper H12.

6.9.1. Constraints on the Scalar Spectral Index

Inflation is a nearly time-translation invariant state,
however this invariance must be broken for inflation to
eventually come to an end. The wavelength of perturba-
tions depends solely on the time that they were produced,
thus a time-translation invariant universe would produce
scale-invariant perturbations (n

s

= 1).34 The predic-
tion that inflation should be nearly, but not fully, time-

34 Scale invariance here means that the contribution to the rms
density fluctuation from a logarithmic interval in k, at the time
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entire COBE signal due to gravity waves. Although this
particular model is ruled out by other constraints — for
instance, primordial black hole abundance (Green et al.
1997) and spectral distortions (Hu et al. 1994) give upper
bounds ns ∼< 1.3) — it illustrates the importance of fitting
for all 10 parameters jointly. Indeed, it is the inclusion of
gravity waves in our models that makes the constraints on
ns so weak.

The 1-dimensional likelihood functions for six of the best
constrained parameters are shown in Figure 5, marginal-
ized over the other 9 parameters. Although none of these
parameters are very tightly constrained, it is encouraging
that CMB observations are already sufficiently powerful
to place upper and lower limits on Ωm, ΩΛ and ns at the
2 − σ level. Because ωcdm and ων are by definition non-
negative, these density parameters are also bounded from
both sides. On the other hand, better data will be required
to place interesting constraints on τ , since this parameter
is almost degenerate with the overall normalization (see,
e.g., Eisenstein et al. 1999). The best constrained param-
eter so far is seen to be the spatial curvature Ωk, with
−0.24 < Ωk < 0.38 at 95% confidence. For comparison,
using Figure 2 in Dodelson & Knox (2000) to read off the

point where the likelihood drops to e−22/2 ≈ 0.14 gives the
95% upper limit Ωk < 0.38. Although the exact numerical
agreement is likely to be coincidental (since we use more
data, etc), this is nonethetheless very reassuring evidence
that the basic result is robust.

Because of the well-known angular diameter distance
degeneracy, where increasing Ωk shifts the acoustic peaks
to the right and increasing ΩΛ can shift them back to the
left, we also plot our constraints marginalized onto the 2-
dimensional (Ωm, ΩΛ)-plane. Figure 6 shows the results
using all the data, and Figures 7– 9 shown the constraints
from various subsets that will be described below. In all
cases, the shaded regions show what is ruled out at 95%
confidence (2−σ). For our 2-dimensional parameter space,
this corresponds to ∆χ2 = 6.18 (not 4), as in Press et al.
(1992) §15.6.

We show four nested contours. The least constrain-
ing one is when all 10 parameters are treated as un-
known. The second includes our Hubble parameter prior
h = 0.65 ± 0.07. The third (what we call our “basic re-
sult”) adds the nucleosynthesis constraint ωb ≈ 0.02 and
the fourth imposes r = τ = 0. Although the first two
priors are observationally well-motivated, the last one is
completely ad hoc, and has only been included to illus-
trate the importance of including reionization and gravity

Table 2 – Maximum-likelihood values and 95% confidence limits

10 free parameters h & ωb prior
Quantity Min Best Max Min Best Max
τ 0.0 0.0 − 0.0 0.0 −
Ωk −1.74 −1.03 0.49 −0.24 .09 0.38
ΩΛ − .16 − −0.19 .67 0.89
h2Ωcdm 0.0 .53 − 0.0 .036 0.30
h2Ωb .11 .13 − .02 .02 .02
h2Ων 0.0 .012 − 0.0 .051 .29
ns .55 1.69 − 0.80 1.05 1.53
nt − 0.00 − − 0.03 −

Fig. 5.— The marginalized likelihood is shown for six individual
parameters using all 65 band power measurements and priors only
from nucleosynthesis (h2Ωb = 0.02) and the Hubble parameter (h =
0.65±0.07). The 2σ limits (see Table 2) are roughly where the curves
cross the horizontal lines.

Fig. 6.— The regions in the (Ωm,ΩΛ)-plane that are ruled out at
2σ using all the data are shown using no priors (red/dark grey), the
prior h = 0.65±0.07 (orange red/grey), the additional nucleosynthe-
sis constraint h2Ωb = 0.02 (orange/light grey) and the additional
constraints r = τ = 0 (yellow/very light grey).

waves in analyses of this kind.
When removing a prior constraint (ωb = 0.02) from our

basic result, we reduce all χ2-values by unity before plot-
ting the corresponding contour, to account for the added
degree of freedom. Similarly, we subtract 2 when dropping
both constraints and add 2 when imposing τ = r = 0.

Figure 6 shows that the CMB data alone is able to rule
out very open (Ωm ∼< 0.4) models with ΩΛ = 0. Adding
the h-constraint tightened the limits somewhat, mainly
on very closed models. A more important prior at at
this stage is that from nucleosynthesis, which helps elim-
inate most of the remaining closed models and places the
first lower limit on ΩΛ. This makes the allowed region in
the (Ωm, ΩΛ)-plane bounded, which is important: other-
wise all other constraints, which are marginalized over ΩΛ,

16

0.94 0.96 0.98 1.00 1.02 1.04
0.0

0.2

0.4

0.6

0.8

1.0

Li
ke
lih
oo
d

ns

WMAP7
SPT+WMAP7
SPT+WMAP7+H0

SPT+WMAP7+BAO
SPT+WMAP7+

H0+BAO

0.94 0.96 0.98 1.00 1.02 1.04
0.0

0.2

0.4

0.6

0.8

1.0

Li
ke
lih
oo
d

ns

SPT+WMAP7+
H0+BAO

Fig. 8.— The data strongly prefer departures from a scale invariant primordial power spectrum (ns < 1), as predicted by inflation.
Left panel: The marginalized one-dimensional constraints on ns for the standard ⇤CDM model (with r = 0) using several datasets. SPT
data tightens the constraint on ns relative to WMAP7 alone. Adding BAO data further tightens this constraint and leads to a preference
for lower values of ns, while adding H0 has little e↵ect. Right panel: The one-dimensional marginalized constraints on ns from the
SPT+WMAP7+H0+BAO dataset given three di↵erent models. Plotted are ⇤CDM (black solid line), ⇤CDM+⌃m⌫ (purple dashed

line) as a typical case for extensions a↵ecting the late-time universe, and ⇤CDM+Ne↵ (green dot-dashed line) as a typical case for
extensions a↵ecting the Silk damping scale. Of the extensions considered here, only those that a↵ect the damping tail – in this case by
varying neutrino species – causes noticeable movement towards ns = 1. We note that in all cases the data robustly prefer a scale-dependent
spectrum with ns < 1.

translation invariant gives rise to the prediction that n
s

should deviate slightly from unity (Dodelson et al. 1997).
Because of the special status of n

s

= 1, and because we
generally expect a departure from n

s

= 1 for inflation-
ary models, detecting this departure is of great interest.
K11 combined data from SPT and WMAP7 to measure
a 3.0� preference for n

s

< 1 in a ⇤CDM model, with
n
s

= 0.966 ± 0.011. We show our constraints on n
s

for the ⇤CDM model from several combined datasets in
the left panel of Figure 8. All datasets strongly prefer
n
s

< 1.
Using SPT+WMAP7 data, we find

n
s

= 0.9623± 0.0097 . (26)

For this dataset, we find P (n
s

> 1) = 4 ⇥ 10�5, a 3.9�
departure from n

s

= 1; n
s

< 1 is heavily favored.
Including BAO data substantially shifts and tightens

the constraints on n
s

, as can be seen in Figure 8. The
BAO distance measure r

s

/D
V

depends on ⌦⇤, breaking
the partial degeneracy between ⌦⇤ and n

s

in the CMB
power spectrum. The BAO preference for lower ⌦⇤ pulls
the central value of n

s

down to n
s

= 0.9515±0.0082. Us-
ing a high-temperature MCMC, we measure the proba-
bility for n

s

to exceed one to be 1.1⇥10�9, corresponding
to a 6.0� detection of n

s

< 1.
Including H0 data has a smaller e↵ect on the n

s

con-
straint than BAO, slightly disfavoring low-n

s

values as
seen in Figure 8. The mechanism for the improvement is
the same as for BAO, however, the CMB andH0 datasets
individually prefer similar values of ⌦⇤. Thus the two
datasets tighten the n

s

constraint around the CMB-only
value, leading to n

s

= 0.9638 ± 0.0090. Using the com-

when k = aH, is independent of k. Here a(t) is the scale factor
and H ⌘ ȧ/a is the Hubble parameter.

bined CMB+H0 dataset, we measure the probability for
n
s

to exceed one to be 3.1 ⇥ 10�5, corresponding to a
4.0� preference for n

s

< 1.
As expected, combining CMB with both BAO and H0

data nudges the constraint on n
s

up slightly from the
CMB+BAO constraint to n

s

= 0.9538 ± 0.0081, thus
weakening the preference for n

s

< 1 slightly from 6.0 to
5.7�.
In summary, regardless of which datasets we use, the

data strongly prefer n
s

< 1 in the ⇤CDM model.
The importance of detecting a departure from scale

invariance leads us to review our modeling assumptions.
Specifically, are there extensions to the standard ⇤CDM
model that could reconcile the data with a scale-invariant
spectrum, n

s

= 1? We answer this question by cal-
culating the n

s

constraints from the CMB+H0+BAO
dataset for several physically motivated ⇤CDM model
extensions.
We consider two classes of model extensions: those

that can a↵ect the slope of the CMB damping tail, and
those that cannot. As a representative case of the first
class of extensions, we consider ⇤CDM+Ne↵ , in which
the number of relativistic species is allowed to vary. As
an example of the second class of extensions, we consider
massive neutrinos ⇤CDM+⌃m

⌫

(with Ne↵ fixed at its
fiducial value of 3.046). These example extensions as
well as several others are explored in considerable detail
in H12.
Of the extensions considered, only models that can

a↵ect the slope of the damping tail significantly in-
crease the likelihood of n

s

= 1. The results of this
test are displayed in the right panel of Figure 8, where
we show the marginalized constraints on n

s

from the
CMB+BAO+H0 dataset. Even the Ne↵ extension does a
poor job reconciling the data with a scale-invariant spec-
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The Seeds for structure
Sharp acoustic peaks are 
difficult to create without 
inflation



The history of the Universe

Understanding the origins of the Universe requires physics not yet 
tested in the Laboratory. 



The theory for the initial seeds 

Abracadabra vs extrapolation of known physics

Inflation is by far our best “non-abracadabra” model



Basic inflation

• Inflation needs to end so there is a clock, time translations are spontaneously 
broken
• Dynamics of the fluctuations of the clock are very constrained by symmetries, 
“EFT of inflation”
• What is the speed of propagation of the fluctuations? 
• Connection between speed of sound and non-Gaussianities. 
• Shape of non-Gaussianities very constrained and go to zero in the “squeezed-
limit”. 

this does not necessarily need to be the case. To describe perturbations around this solution
one can choose a gauge where the privileged slicing coincides with surfaces of constant t, i.e.
��(~x, t) = 0. In this ‘unitary’ gauge there are no explicit scalar perturbations but only metric
fluctuations. As time di↵eomorphisms have been fixed and are not a gauge symmetry any-
more, the graviton now describes three degrees of freedom: the scalar perturbation has been
eaten by the metric. One therefore can build the most generic e↵ective action with operators
that are functions of the metric fluctuations and that are invariant under the linearly-realized
time-dependent spatial di↵eomorphisms. As usual with e↵ective field theories, this can be
done in a low energy expansion in fluctuations of the fields and derivatives. We obtain the
following Lagrangian [6, 15]:

S =

Z
d4x

p
�g

h 1

2
M2

Pl

R + M2

Pl

Ḣg00 � M2

Pl

(3H2 + Ḣ) +

+
1

2!
M

2

(t)4(g00 + 1)2 +
1

3!
M

3

(t)4(g00 + 1)3 +

�M̄
1

(t)3

2
(g00 + 1)�Kµ

µ �
M̄

2

(t)2

2
�Kµ

µ
2 � M̄

3

(t)2

2
�Kµ

⌫�K
⌫
µ + ...

i
,(1)

where we denote by �Kµ⌫ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⌫ = Kµ⌫ � a2Hhµ⌫ with hµ⌫ being the induced
spatial metric, and where M

2,3 and M̄
1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [6].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [19], the physics of the Goldstone decouples from the two
graviton helicities at high enough energies, equivalently the mixing can be neglected. The
detailed study of [6, 7] shows that in most situations of interest this is indeed the case and
one can neglect the metric fluctuations1.

As anticipated, we reintroduce the Goldstone boson (⇡) by performing a broken time-di↵.,
calling the parameter of the transformation �⇡, and then declaring ⇡ to be a field that under
time di↵.s of the form t ! t + ⇠0(x) transforms as

⇡(x) ! ⇡̃(x̃(x)) = ⇡(x)� ⇠0(x) . (2)

In this way di↵. invariance is restored at all orders. For example the terms containing g00 in

1Equivalently, the neglected e↵ects are suppressed by slow-roll parameters or by powers of H/MPl.

3

Predictions of these model are in perfect agreement 
with the data



Figure 8: Top panel: 68%, 95% and 99.7% confidence regions in the single-field inflation param-

eters (cs, c̃3) from five-year WMAP data, obtained from an analysis which uses f equil.
NL and forthog.

NL

(eq. (81)). Bottom panel: Confidence regions obtained from an analysis using f equil.
NL alone (eq. (82)),

showing weaker constraints.

30

give the results of the analysis of the WMAP data and the constraints on the Lagrangian for
the inflationary fluctuations. In sec. 5, we summarize our results.

2 E↵ective Field Theory of Inflation and Shape of non-

Gaussianities

An e↵ective field theory description for the fluctuations of the inflaton has been developed
in [3]. By unifying in one description all single-field models, it allows us to explore in full
generality the signature space of single-field inflation, in its broadest sense. In inflation there
is a physical clock that controls when inflation ends. This means that time translations are
spontaneously broken, and that therefore there is a Goldstone boson associated with this
symmetry breaking. As usual, the Lagrangian of this Goldstone boson is highly constrained
by the symmetries of the problem, in this case the fact that the spacetime is approximately
de Sitter space, in the sense that |Ḣ|/H2 ⌧ 1. The Goldstone boson, that we can call ⇡,
can be thought of as being equivalent, in standard models of inflation driven by a scalar field,
to the perturbations in the scalar field ��. The relation valid at linear order is ⇡ = ��/�̇,
where �̇ is the speed of the background solution. We stress that the description in terms
of the Goldstone boson ⇡ is more general than this and it does not assume the presence
of a fundamental scalar field. Although here and in the rest of the paper we often refer
to the Lagrangian for the Goldstone boson as the Lagrangian for single-field inflation, this
should be meant in the broadest sense that there is only one light relevant degree of freedom
during the inflationary phase. It does not mean that the background solution is generated
by a fundamental scalar field: the Lagrangian for the inflationary fluctuations expressed in
terms of the Goldstone boson is universal and independent of the details through which the
background solution is generated.

The Goldstone boson ⇡ is related to the standard curvature perturbation ⇣ by the relation
⇣ = �H⇡, which is valid at linear order and at leading order in the generalized slow roll
parameters. The most general Lagrangian for the Goldstone boson is given by [3, 10]:

S⇡ =

Z
d4x

p�g

"
�M2

Pl

Ḣ

c2s

✓
⇡̇2 � c2s

1

a2

(@i⇡)2
◆

(8)

+
ḢM2

Pl

c2s
(1 � c2s)⇡̇

1

a2

(@i⇡)2 � ḢM2

Pl

c2s
(1 � c2s)

✓
1 +

2

3

c̃
3

c2s

◆
⇡̇3

�d
1

4
HM3

✓
6 ⇡̇2 +

1

a2

(@i⇡)2
◆

� (d
2

+ d
3

)

2
M2

1

a4

(@2

i ⇡)2 � 1

4
d
1

M3

1

a4

(@2

j⇡)(@i⇡)2

+ . . .
i

,

where here we have assumed that the Goldstone boson is protected by an approximate shift
symmetry that allows us to neglect terms where ⇡ appears without a derivative acting on
it. Let us explain the symbols that appear in the above action. For the large level of non-
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The connection between cs and non-Gaussianity
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Even within this framework there are less explored 
corners



Opening the box

Should we?



Are there additional degrees of freedom 
relevant for the creation the perturbations?

• Heavy (m >> H)
• Masses of order Hubble
• Light (m << H)



Light fields

Operator Dispersion Type Origin Squeezed L.

w = csk w / k2

�̇4 , �̇2(@i�)2 , (@i�)4 X Ad., Iso. Ab., non-Ab.

(@µ�)4 X Ad., Iso. Ab., non-Ab.

�̇p(@i@j�)(4�p) X Ad., Iso. Ab.

�4 X X Ad., Iso. Ab.s, non-Ab.s, S. X

�̇�3 X X Ad., Iso. Ab.†s, non-Ab.†s. X

�2�̇2 , �2(@i�)2 X X†? Ad.†?, Iso. non-Ab, Ab.†s
?, non-Ab.†s

?, X

�2(@µ�)2 X Ad.†?, Iso. non-Ab, Ab.†s
?, non-Ab.†s

?, S.? X

�(@�)3 X Iso. non-Ab.?s. X

�̇3 , �̇(@i�)2 X Ad., Iso. Ab., non-Ab.

�̇(@i�)2 , @2
j�(@i�)2 X Ad., Iso. Ab.

�3 X X Ad., Iso. Ab.s, non-Ab.s, S, R X

�̇�2 X X Ad., Iso. Ab.s, non-Ab.s X

��̇2 , �(@i�)2 X X Ad., Iso. Ab.†s
?, non-Ab.†s

? X

�(@µ�)2 X Ad., Iso. Ab.†s
?, non-Ab.†s

?. X

Table 1: Signatures in Multi-field Inflation. In the first column we give the operator generating the

non-Gaussian signal: operators quartic in the �’s lead to a four-point function, operators cubic in the

�’s lead to a three-point function. In the second and third columns we explain with which dispersion

relation the signal can be generated. In the third we explain if the signal can appear in the Adiabatic

(Ad.) or the Isocurvature (Iso.) fluctuations. In the fourth we state the potential origin of the signal.

Here Ab. stands for Abelian; non-Ab. stands for non-Abelian, S stands for supersymmetry, and

R stands for generated by non-linearities at reheating. The subscript s indicates that the term is

generated by soft-breaking terms. The symbol † represents that such a signal can be generated in the

case the soft symmetry breaking term is such that it forbids some of the lowest dimensional terms.

The symbol ? represents the fact that the signal is in general subleading, but still possibly detectable.

In the last column we explicitly mention if the induced signal has a non-vanishing squeezed limit

and is therefore detectable also in clustering statistics of collapsed objects.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [1].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [26], the physics of the Goldstone decouples from the two
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• Local type non-Gaussianities
• Different shapes than those that can be produced by single field
• 4-pt functions with large signal to noise



Local non-Gaussianty



Masses of order Hubble



Heavy modes



Other symmetry breaking patterns



Opening the box Where should we stop?

Abracadabra  
Simplicity

Naturalness
UV-Abracadabra



Summary


