The Mass Function

Marilena LoVerde University of Chicago

The Mass Function

• What is it?

Non-Gaussianity in the mass function

Are we done?

 $\frac{dn}{dM} dM = \frac{dn}{dM} dM = \frac{dn}$

average number density of dM = dark matter halos with mass between M, M+dM

depends on statistics and evolution of small-scale matter fluctuations

probe of ρ_m, σ₈, dark energy, primordial non-Gaussianity...

 $\frac{dn}{dM} dM = dark matter halos with$ mass between M, M+dM

depends on statistics and evolution of small-scale matter fluctuations

probe of ρ_m , σ_8 , dark energy, primordial non-Gaussianity. . .

How do we see the halos?

X-ray luminosity of gas in halo

richness (number of galaxies in the halo)

Sunyaev-Zel'dovich effect (CMB photons scattering off hot electrons in the halo)

gravitational lensing of galaxies

How do we see the halos?

Sunyaev-Zel'dovich effect

(CMB photons scattering off X-ray luminosity of gas in halo hot electrons in the halo) halo mass 356.25 356.20 356.10 gravitational lensing of galaxies richness behind halo (number of galaxies in the halo)

How do we see the halos?

SZ

R.A.

dark matter

356.15 halo mass richness lensing

X-ray

R.A

halo mass <--> currency between different observables

mass function <---> currency between observables and theory

halo mass <--> currency between different observables

what's a halo? rency between opservables and theory

How does primordial non-Gaussianity impact the mass function?

How does primordial non-Gaussianity impact the mass function?

Example non-Gaussian initial conditions

How does primordial non-Gaussianity impact the mass function?

Example non-Gaussian initial conditions

non-Gaussianity changes the abundance of rare fluctuations in the initial density field

How does primordial non-Gaussianity impact the mass function?

Example non-Gaussian initial conditions

How does primordial non-Gaussianity impact the mass function?

 $f_{NL} = -5000$

γL= +5000 375 Μραλ

Dalal, Dore, Huterur, Shirokov 2007

linear density field

threshold for collapse of spherical overdensity

bound halos

(Press & Schechter 1974)

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000

Is there a good reason this should work?

stolen from LANL astro group http://qso.lanl.gov/pictures/cdm_k1.mpg

NO!

Is there a good reason this should work?

stolen from LANL astro group http://qso.lanl.gov/pictures/cdm_k1.mpg

ridiculously well given assumptions!

well enough for precision cosmology?

Calibration off sims remains the standard

Large scale bias and the peak background split

Ravi K. Sheth¹ & Giuseppe Tormen²

PRECISION DETERMINATION OF THE MASS FUNCTION OF DARK MATTER HALOS MICHAEL S. WARREN¹, KEVORK ABAZAJIAN¹, DANIEL E. HOLZ¹ AND LUIS TEODORO^{1,2} Draft version February 2, 2008

THE HALO MASS FUNCTION: HIGH-REDSHIFT EVOLUTION AND UNIVERSALITY

ZARIJA LUKIĆ¹, KATRIN HEITMANN², SALMAN HABIB³, SERGEI BASHINSKY³, AND PAUL M. RICKER^{1,4} ¹ Dept. of Astronomy, University of Illinois, Urbana, IL 61801 ² ISR-1, ISR Division, Los Alamos National Laboratory, Los Alamos, NM 87545 ³ T.S. Thangation Division, Log Alamos National Laboratory, Los Alamos, NM 87545

TOWARD A HALO MASS FUNCTION FOR PRECISION COSMOLOGY: THE LIMITS OF UNIVERSALITY

JEREMY TINKER^{1,2}, ANDREY V. KRAVTSOV^{1,2,3}, ANATOLY KLYPIN⁴, KEVORK ABAZAJIAN⁵, MICHAEL WARREN⁶, GUSTAVO YEPES⁷, STEFAN GOTTLÖBER⁸, DANIEL E. HOLZ⁶ Draft version March 18, 2008

Nevertheless, this simple approach works pretty well for the ratio $(dn_{NG}/dM)/(dn_G/dM)$

Plus it's useful to have something analytic

Nevertheless, this simple approach works pretty well for the ratio (dn_{NG}/dM₎/(dn_G/dM)

Plus it's useful to have something analytic

How to get the PDF for δ (M) ?

 Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

 Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)

Approximate PDF by truncating In(Edgeworth series)

(ML & Smith 2011)

cumulants easy to compute, pretty insensitive to "shape" of polyspectra

Nevertheless, this simple approach works pretty well for the ratio (dn_{NG}/dM₎/(dn_G/dM)

Plus it's useful to have something analytic

How to get the PDF for δ (M) ?

 Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)
- Approximate PDF by truncating ln(Edgeworth series)

(ML & Smith 2011)

Beyond "Extended Press-Schechter": Lam & Sheth 2009; Maggiore & Riotto 2009; D'Amico, Musso, Norena, Paranjape 2010; Chongchitnan & Silk 2010; Yokoyama, Sugiyama, Zaroubi, Silk 2011; Paranjape, Gordon, Hotchkiss 2011; Musso & Paranjape 2011; . . .

Compare with simulations

kurtosis can have important effects on the mass function!

see also Dalal, Dore, Huterer, Shirokov 2007; Grossi et al 2009; Kang, Norberg, Silk 2009; Pillepich, Porciani, Hahn 2009 ; Desjacques and Seljak 2010; Wagner, Verde, Boubekeur 2010

ML & Smith 2010

Compare with simulations

the ``log-Edgeworth" mass reliably captures NG effects for $f_{\rm NL}$, $g_{\rm NL}$, and $\tau_{\rm NL}$ types of non-Gaussianity

see also Dalal, Dore, Huterer, Shirokov 2007; Grossi et al 2009; Kang, Norberg, Silk 2009; Pillepich, Porciani, Hahn 2009 ; Desjacques and Seljak 2010; Wagner, Verde, Boubekeur 2010

ML & Smith 2010

• Same analytic expression in terms of cumulants works well for f_{NL} , g_{NL} , τ_{NL} (which are different shapes)

• Same analytic expression in terms of cumulants works well for f_{NL} , g_{NL} , τ_{NL} (which are different shapes)

•``Extended Press-Schechter" approaches work for nonlocal forms too (Wagner, Verde, Boubekeur)

• Same analytic expression in terms of cumulants works well for f_{NL} , g_{NL} , τ_{NL} (which are different shapes)

•``Extended Press-Schechter" approaches work for nonlocal forms too (Wagner, Verde, Boubekeur)

Marcello is hard at work finding ultimate analytic formula!

Precision cluster cosmology is <u>hard</u>

mass-observable relation?

(e.g. Mantz, Allen, Rapetti, Ebeling 2010; Rozo, Bartlett, Evrard, Rykoff 2012: Mahdavi et al 2007, 2012; Marrone et al 2012...)

baryonic effects?

What remains?

Precision cluster cosmology is <u>hard</u>

what's a halo?

201, 2012; Marrone et al 2012...) baryonic effects?

(e.g. Stanek, Rudd, Evrard 2009)

Current large-scale structure data:

354.5

354.3 R.A.

354.4

354.2

354.35 B.A.

354.40

354.30

• Same analytic expression in terms of cumulants works well for f_{NL} , g_{NL} , τ_{NL} (which are different shapes)

•``Extended Press-Schechter" approaches work for nonlocal forms too (Wagner, Verde, Boubekeur)

 Marcello (and others!) is (are!) hard at work finding ultimate analytic formula!

• Lots of challenges for non-Gaussianity with clusters -but the data exists/will arrive! (and these challenges aren't different from constraining dark energy with clusters)

