Distinctive non-Gaussianity from vector fields
coupled to the inflaton
Marco Peloso, University of Minnesota
$\phi F \widetilde{F}^{\text {M }}$
Barnaby, MP, PRL 106 (2011)

Barnaby, Namba, MP, JCAP 1104 (2011) | Barnaby, Namba, MP, PRD 85 (2012) |
| :--- |
| Bartolo, Matarrese, MP, |
| Ricciardone, arXiv:1210.3257 |

Shift symmetry protects flatness of inflaton potential.
Particularly useful for large $\Delta \phi$, recall $r>0.01 \Rightarrow \Delta \phi \gtrsim M_{p}$
E.g. many realizations of axion inflation, characterized by $m \ll f \ll M_{p}$

Couplings restricted by:

- Shift symmetry
- Parity

$$
\mathcal{L}_{\mathrm{int}}=\frac{C}{f} \partial_{\mu} \phi \bar{\psi} \gamma^{\mu} \gamma_{5} \psi+\frac{\alpha}{f} \phi F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

- Gauge invariance

$$
\Gamma_{\phi \rightarrow \psi \psi} \simeq \frac{C^{2}}{2 \pi f^{2}} m_{\phi} m_{\psi}^{2} \quad \quad \Gamma_{\phi \rightarrow A A}=\frac{\alpha^{2}}{64 \pi f^{2}} m_{\phi}^{3}
$$

$$
\begin{gathered}
\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F} \quad \begin{array}{l}
\text { Classical motion } \phi^{(0)}(t) \text { affects } \\
\text { dispersion relations of } \pm \text { helicities }
\end{array} \\
\Rightarrow\left(\frac{\partial^{2}}{\partial \tau^{2}}+k^{2} \mp 2 a H k \xi\right) A_{ \pm}(\tau, k)=0 \quad \xi \equiv \frac{\alpha \dot{\phi}^{(0)}}{2 f H} \simeq \text { const. }
\end{gathered}
$$

One tachyonic helicity at horizon crossing
Anber, Sorbo '10

$\delta \phi=\delta \phi$ vacuum $+\delta \phi_{\text {inv.decay }}$

- Observable NG for $f / \alpha \lesssim 10^{16} \mathrm{GeV}$, natural in axion inflation ! (5 orders of magnitude stronger bound than $a_{\mathrm{QCD}} \gamma \gamma$ coupling)
- In principle, $\delta A \delta A \rightarrow h$ of a given chirality

However, unobservable due to NG limits

- $\delta A \sim \mathrm{e}^{\pi \xi}$ and $\xi \propto \dot{\phi}$. Inflaton speeds up during inflation. Possible GW signal at interferometer scales (where weaker limits from ζ)

Cook, Sorbo'11

- Actually, for interesting ξ strong backreaction of δA at the end of inflation

Barnaby, Pajer, MP '12


```
M,
Particle production \(X \rightarrow \mathrm{GW}\) at CMB scales ?
Twofold: (i) \(X \rightarrow h\) and (ii) \(X \nrightarrow \zeta\) Barnaby, Moxon, Namba
- No direct \(\phi-X\) coupling MP, Shiu, Zhou '12
- Relativistic \(X\) (or suppressed quadrupole moment)
\(\psi F \tilde{F} \rightarrow r \gg 16 \epsilon\) and gaussian \(\zeta\)
(general discussion; see also Sorbo '11; Senatore, Silverstein, Zaldarriaga'11 Carney, Kovetz, Fischler, Lorshbough, Paban '12)
```


$f(\phi) F^{2}$ mechanism

With $\phi F \tilde{F}$, gauge field diluted away after horizon crossing However, reasons to produce and to keep δA alive

- Magnetogenesis:
$\vec{B}>\left(10^{-20}-10^{-14}\right) \mathrm{G}$ on extra-galactic scales inferred from γ-rays propagation Neronov, Vovk '10
- Statistical anisotropy $P_{\zeta}(\vec{k})$:

No evidence (WMAP systematics) Hanson, Lewis, A. Challinor '10
Pullen, Hirata '10
However, Planck will probe anisotropy at $\sim \%$ level
Pullen, Kamionkowski '07
Ma, Efstathiou, Challinor '11
What about NG ? (any mark from spin 1 ?)
Seery '08; Barnaby, Namba, MP '12; Bartolo, Matarrese, MP, Ricciardone '12
$P(\vec{k})$ from homogeneous $\vec{A}(t)$ (anisotropic inflation or curvaton) "Electric" component. Use em notation also in this case

$$
\text { Electric } \leftrightarrow \text { magnetic duality for }\langle f\rangle \leftrightarrow \frac{1}{\langle f\rangle} \quad\left(f F^{2}\right)
$$

Consider $\langle f\rangle \propto a^{n}$. Frozen and scale-invariant super-horizon

$$
\begin{array}{rlr}
& \frac{d \rho_{B}}{d \ln k} \simeq H^{4} \text { for } n=4 \quad \text { Ratra '92 } \\
\Rightarrow & \rho_{B} \simeq H^{4} \ln \frac{a_{\mathrm{end}}}{a_{\text {in }}}=H^{4} N_{\mathrm{tot}} &
\end{array}
$$

Too much energy in IR modes for $|n|>4$

A) Bad for $n>0$ and $\alpha_{\text {end }}=\alpha_{0}$ (magnetogenesis)

Demozzi, Mukhanov, Rubinstein '09
B) No pbm if $n<0$ (statistical anisotropy)
C) No pbm if $n>0$ but $\alpha_{\text {end }} \ll \alpha_{0}$ (NG study for a generic A_{μ})

Recent works on $\left\langle\zeta \vec{B}^{2}\right\rangle$ assume problem somehow solved

[^0]Functional form $\quad f=f_{0} \exp \left[-\int \frac{n d \phi}{\sqrt{2 \epsilon(\phi)} M_{p}}\right] \quad, \quad\langle f\rangle \propto a^{n}$
Martin, Yokoyama '07

Anisotropic inflation: Classical background eom solved by $\vec{E}^{(0)}$ with

$$
\begin{aligned}
& \frac{\Delta H}{H}=\frac{2 \rho_{E^{(0)}}}{V(\phi)} \simeq \frac{\delta n \epsilon}{4} \\
& n=-4-\delta n
\end{aligned}
$$

Watanabe, Kanno, Soda '09

Several models of vector curvaton
Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

- Perturbations of anisotropic inflation

Dulaney, Gresham '10; Gumrukcuoglu, Himmetoglu, MP '10 $P(\vec{k}) \simeq P(k)\left[1+g_{*} \cos ^{2} \theta_{\vec{k}, \vec{E}^{(0)}}\right]$ $g_{*} \simeq-\frac{48}{\epsilon} N_{\mathrm{CMB}}^{2} \frac{2 \rho_{E^{(0)}}}{V(\phi)}$

$$
g_{*}=0.1 \text { for } \frac{\rho_{E^{(0)}}}{V(\phi)} \simeq 6 \cdot 10^{-9}
$$

$$
\left(n=-4-10^{-6}\right)
$$

- In "magnetogenesis" studies $(n=4)\left\langle A_{\mu}\right\rangle=0$ assumed $\Rightarrow g_{*}=0$
- What about electric \leftrightarrow magnetic duality ?
- $g_{*}=0.1$ for $\rho_{E^{(0)}} \ll \rho_{\phi}$. Is this "stable" ?
- $\int \frac{d \rho_{B}}{d K} \sim H^{4} N_{\text {tot }}$. What does this mean ?

After $N \mathrm{e}-$ fold of inflation, $\rho=\frac{\left\langle\vec{V}^{2}\right\rangle}{2} \sim H^{4} N$
"Random walk" addition of the modes that have left the horizon.
They add up to a classical homogeneous background.

Here, the background is vector that points somewhere in space!

In any realization, CMB modes see a $\vec{V}_{\text {classical }}$ drawn by a
statistical distribution of variance $\sim H^{4}\left(N_{\text {tot }}-60\right)$

Contribution not included, or not associated to a background vector, in previous applications of $f(\phi) F^{2}$

Consequences: Bartolo, Matarrese, MP, Ricciardone '12

- For any mechanism giving \vec{V}_{k} on super-horizon scales, expect $\vec{V}_{\text {background }}$ with random orientation, and magnitue $\sqrt{\left\langle\vec{V}^{2}\right\rangle}$
- For $f(\phi) F^{2}$, arranged to produced scale invariant \vec{B}_{k} or \vec{E}_{k}, $\left|g_{*}\right|_{\text {expected }} \gtrsim 0.1 \frac{N_{\text {tot }}-N_{\mathrm{CMB}}}{37} \quad$ (generically, too anisotropic)
- Strict relation between $P_{\zeta}(\vec{k})$ and B_{ζ} in this mechanism
$B_{\zeta} \propto \frac{1-\cos ^{2} \theta_{\hat{k}_{1}, V}-\cos ^{2} \theta_{\hat{k}_{2}, V}+\cos \theta_{\hat{k}_{1}, V} \cos \theta_{\hat{k}_{2}, V} \cos ^{2} \theta_{\hat{k}_{1}, \bar{k}_{2}}}{k_{1}^{3} k_{2}^{3}}, \quad k_{1} \ll k_{2}, k_{3}$

$$
f_{\mathrm{NL}}^{\text {eff.local }} \simeq 26 \frac{\left|g_{*}\right|}{0.1} \quad \begin{aligned}
& \text { Peaked as local in squeezed limit } \\
& \text { nontivial angular dependence }
\end{aligned}
$$

Conclusions

- We are about to detect / improve limits on $N G, r, \Omega_{\mathrm{GW}}, P(\vec{k})$
- Not a guarantee; this motivates theory. Discussed subset of models with \vec{A}. Pbm: produce and keep them around
- Natural to use inflaton, $\phi \leftrightarrow F \tilde{F}, F^{2}$

- Rich phenomenology from axion inflation; ~ equil. NG; chiral GW

Gluscevic, Kamionkowski '10 Seto, Taruya '07

- NG with nontrivial angular dependence in squeezed limit

[^0]: Caldwell, Motta, Kamiokowski '11; Kumar, Sloth '12;

