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Shift symmetry protects flatness of inflaton potential.
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Physical e↵ects only when

mode has size ⇠ horizon

Renormalization realized by
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• A production from φ kinetic energy. Resulting friction can be so

strong as to facilitate φ slow roll. Anber, Sorbo ’09

• We impose negligible backreaction of A on background dynamics

δφ̈ + 3H δφ̇ −
#∇2

a2
δφ + m2δφ =

α

f
Fµν F̃µν

(We verified that disregarding δgµν is legitimate for α
f
# 1

Mp
)

δφ = δφvacuum + δφinv.decay

Standard vacuum solution

Inverse decay

�� = ��vacuum + ��inv.decay

Uncorrelated, h��ni = h��n
vaci+ h��n

inv.deci ,

�A

�A

��

Barnaby, MP ’11; Barnaby, Namba, MP ’11
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• Full equation from 2nd order perturbation theory (δgij,scalar = 0)

• Curvature pert. on uniform density hypersurfaces ζ = − H
φ̇(0) δφ

• Disregard gravitational vertices for f & Mp
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FIG. 5: �GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and �CMB = 0, 2.33, 2.66 (the value of � when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e�ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e�ects start to play an important role in determining the evolution
of the homogeneous background, ⇤(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇥CMB as small
as 2.33 (equivalent to f/(Mp�) � 0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp�) � 0.031) in the case of a quadratic potential.

Barnaby, Pajer, MP ’12

� ! X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if �� < Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

Due to (ii), we assume no direct ��X coupling

 (t) produces X, but  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

Due to (ii), we assume no direct ��X coupling

 (t) produces X, but  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X (or suppressed quadrupole moment)

 (t) produces X, but  6= �

(general discussion; see also Sorbo ’11; Senatore, Silverstein, Zaldarriaga
’11

Carney, Kovetz, Fischler, Lorshbough, Paban ’12)

 FF̃ ! r � 16 ✏ and gaussian ⇣

� ! X ! GW at CMB scales

Possible r > 16 ✏? (observe GW even if �� < Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Theme: It is a fight between X ! ⇣ and X ! h

Senatore, Silverstein, Zaldarriaga ’11

� ! X ! GW at CMB scales

Possible r > 16 ✏? (observe GW even if �� < Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Theme: It is a fight between X ! ⇣ and X ! h

Senatore, Silverstein, Zaldarriaga ’11

� ! X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if �� < Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

Due to (ii), we assume no direct ��X coupling

X produced during inflation from  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X ( X or suppressed quadrupole moment)

 (t) produces X, but  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X (or suppressed quadrupole moment)

 (t) produces X, but  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

 FF̃ ! r � 16 ✏ and gaussian ⇣

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X (or suppressed quadrupole moment)

 (t) produces X, but  6= �

( = � studied by Sorbo ’11; Senatore, Silverstein, Zaldarriaga ’11)

 FF̃ ! r � 16 ✏ and gaussian ⇣

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X (or suppressed quadrupole moment)

 (t) produces X, but  6= �

(general discussion; see also Sorbo ’11; Senatore, Silverstein, Zaldarriaga

’11)

 FF̃ ! r � 16 ✏ and gaussian ⇣

Barnaby, Pajer, MP ’12

Particle production X ! GW at CMB scales ?

Possible r > 16 ✏? (observe GW even if ��⌧ Mp ?)

Barnaby, Moxon, Namba,

MP, Shiu, Zhou ’12

Twofold: (i) X ! h and (ii) X !6 ⇣

• No direct ��X coupling

• Relativistic X (or suppressed quadrupole moment)

 (t) produces X, but  6= �

(general discussion; see also Sorbo ’11; Senatore, Silverstein, Zaldarriaga
’11

Carney, Kovetz, Fischler, Lorshbough, Paban ’12)

 FF̃ ! r � 16 ✏ and gaussian ⇣



f (�)F2 mechanism

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, there may be reasons to keep �A alive

• Magnetogenesis:

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (besides a WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

However, Planck will probe anisotropy at ⇠ % level

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:
~B >

�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

However, Planck will probe anisotropy at ⇠ % level

Pullen, Kamionkowski ’07

Ma, Efstathiou, Challinor, ’11

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:
~B >

�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

However, Planck will probe anisotropy at ⇠ % level

Pullen, Kamionkowski ’07

Ma, Efstathiou, Challinor ’11

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:

~B >
�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10

However, Planck will probe anisotropy at ⇠ % level

Pullen, Kamionkowski ’07

Ma, Efstathiou, Challinor ’11

What about NG ? (any mark from spin 1 ?)

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:
~B >

�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10
However, Planck will probe anisotropy at ⇠ % level

Pullen, Kamionkowski ’07

Ma, Efstathiou, Challinor ’11

What about NG ? (any mark from spin 1 ?)
Seery ’08; Barnaby, Namba, MP ’12;

Bartolo, Matarrese, MP, Ricciardone ’12

f (�)F2 mechanism

With �FF̃ , gauge field diluted away after horizon crossing

However, reasons to produce and to keep �A alive

• Magnetogenesis:
~B >

�
10�20 � 10�14

�
G on extra-galactic scales inferred from

�-rays propagation

Neronov, Vovk ’10

• Statistical anisotropy P⇣

⇣
~k
⌘
:

No evidence (WMAP systematics)

Hanson, Lewis, A. Challinor ’10

Pullen, Hirata ’10
However, Planck will probe anisotropy at ⇠ % level

Pullen, Kamionkowski ’07

Ma, Efstathiou, Challinor ’11

What about NG ? (any mark from spin 1 ?)
Seery ’08; Barnaby, Namba, MP ’12;

Bartolo, Matarrese, MP, Ricciardone ’12



• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

�
fF 2

�

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 1

Ratra ’92

) ⇢B ' H4 ln
aend

ain
= H4Ntot

• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 1

Ratra ’92

• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

Consider hfi / an. Frozen and scale-invariant super-horizon

• Mechanisms for both ~B and P
�
~k
�
from V

�
A2

�
, RA2, �

�
A2 � v2

�
.

In them, however, Along is a ghost

Contaldi, Himmetoglu, MP ’09

• U(1) invariance saves f (�)F 2

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 1

Ratra ’92

) ⇢B ' H4 ln
aend

ain
= H4Ntot

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

�
fF 2

�

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 4

Ratra ’92

) ⇢B ' H4 ln
aend

ain
= H4Ntot

Too much energy in IR modes for |n| > 4

Demozzi, Mukhanov, Rubinstein ’09

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

�
fF 2

�

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 1

Ratra ’92

) ⇢B ' H4 ln
aend

ain
= H4Ntot

Too much energy in IR modes for |n| > 1

Demozzi, Mukhanov, Rubinstein ’09

P
�
~k
�
from homogeneous ~A (t) (anisotropic inflation or curvaton)

“Electric” component. Use em notation also in this case

Electric $ magnetic duality for hfi $
1

hfi

�
fF 2

�

Consider hfi / an. Frozen and scale-invariant super-horizon

d⇢B

d ln k
' H4 for n = 4

Ratra ’92

) ⇢B ' H4 ln
aend

ain
= H4Ntot

Too much energy in IR modes for |n| > 4

Demozzi, Mukhanov, Rubinstein ’09



L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A

a

α

1

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm is ↵end ⌧ ↵0 (NG study for a generic gauge

field)

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm is ↵end ⌧ ↵0 (NG study for a generic Aµ)

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm is ↵end ⌧ ↵0 (NG study for a generic Aµ)

Recent works on
⌦
⇣ ~B2

↵
assume problem somehow solved

Caldwell, Motta, Kamiokowski ’11; Kumar, Sloth ’12; ....

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm if n > 0 but ↵end ⌧ ↵0 (NG study for a generic Aµ)

Recent works on
⌦
⇣ ~B2

↵
assume problem somehow solved

Caldwell, Motta, Kamiokowski ’11; Kumar, Sloth ’12; ....

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm is ↵end ⌧ ↵0 (NG study for a generic gauge

field)

B

L ⇠ �
f

4
F 2 , f / an and constant ~B for n = 4 constant ~E for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm if n > 0 but ↵end ⌧ ↵0 (NG study for a generic Aµ)

Recent works on
⌦
⇣ ~B2

↵
assume problem somehow solved

Caldwell, Motta, Kamiokowski ’11; Kumar, Sloth ’12; ....

C

L ⇠ �
f

4
F 2 , f / an constant

d⇢B

d ln k
for n = 4 constant

d⇢E

d ln k
for n = �4

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm if n > 0 but ↵end ⌧ ↵0 (NG study for a generic Aµ)

Recent works on
⌦
⇣ ~B2

↵
assume problem somehow solved

Caldwell, Motta, Kamiokowski ’11; Kumar, Sloth ’12; ....

L ⇠ �
f

4
F 2 , f / an constant

d⇢B

d ln k
for n = 4 ( ⇢E for n = �4 )

↵phys / f�1 / a�n

A) Bad for n > 0 and ↵end = ↵0 (magnetogenesis)

Demozzi, Mukhanov, Rubinstein ’09

B) No pbm if n < 0 (statistical anisotropy)

C) No pbm if n > 0 but ↵end ⌧ ↵0 (NG study for a generic Aµ)

Recent works on
⌦
⇣ ~B2

↵
assume problem somehow solved

Caldwell, Motta, Kamiokowski ’11; Kumar, Sloth ’12; ....



Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Several models of vector curvaton

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Several models of vector curvaton

Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢
E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢
E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Several models of vector curvaton

Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Several models of vector curvaton

Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

 0.0001

 0.001

 0.01

 0.1

-50 -40 -30 -20 -10  0

6
H

 / 
H

e-folds

bn=0.4
slow roll



Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10

Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

Functional form f = f0 exp

"
�
Z

nd�p
2✏ (�)Mp

#
, hfi / an

Martin, Yokoyama ’07

Anisotropic inflation: Classical background eom solved by ~E(0) with

�H

H
=

2⇢E(0)

V (�)
'

�n ✏

4
, n = �4� �n

Watanabe, Kanno, Soda ’09

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10

Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10

• Perturbations of anisotropic inflation

Perturbations P
�
~k
�
' P (k)

⇥
1+ g⇤ cos2 ✓~k, ~E(0)

⇤

g⇤ ' �
48

✏
N2

CMB
2⇢E(0)

V (�)

g⇤ = 0.1 for
⇢E(0)

V (�)
' 6 · 10�9

(n = �4� 10�6)

Dulaney, Gresham ’10; Gumrukcuoglu, Himmetoglu, MP ’10

Watanabe, Kanno, Soda ’10
• In “magnetogenesis” studies (n = 4) hAµi = 0 assumed ) g⇤ = 0

statistical isotropy

• What about electric $ magnetic duality ?

• Ntot dependence ?

• g⇤ = 0.1 for ⇢E(0) ⇠ 10�8⇢�. Classical solution “stable” ?
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In any given realization (of the first

• What about electric $ magnetic duality ?

• g⇤ = 0.1 for ⇢E(0) ⌧ ⇢�. Is this “stable” ?

•
R

d⇢B
dK

⇠ H4Ntot. What does this mean ?



Expanding f (�)F2

• Diag. 2 computed in anisotropic inflation & vector curvaton

• Diag. 3 in “magnetogenesis”. / Ntot from IR modes in one propagator
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2
⇠ H4 (Ntot � 60)

Contribution from the modes produced before. As for a scalar field,

these IR modes add up to form a homogeneous classical background.

Here, the background is vector that points somewhere in space !

The variance measures the probable value for
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• NG with nontrivial angular dependence in squeezed limit


