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Primordial non-G + observations

1. CMB: can we independently constrain every interesting
    non-Gaussian signal?

2. Large-scale structure: what non-Gaussian signals can be 
constrained, and what are the degeneracies?
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EFT of inflation 

1-1 correspondence between operators in       and        -like parameters
(Degree-N operator shows up in N-point CMB correlation function)
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= Goldstone boson of spontaneously broken time translationsπ

+ρπ̇σ + Gσ3 + · · ·
�

fNLSπ

Equilateral+orthogonal 3-point shapes
(Senatore, KMS & Zaldarriaga 2009)

Higher-derivative 3-point shapes 
(Behbahani, Mirbabayi, Senatore & KMS to appear)

4-point shapes
(Senatore & Zaldarriaga 2009)

Quasi single-field inflation
(Chen & Wang 2009) 
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CMB data analysis

Degree-N operator       (e.g.                or                )

�ζk1ζk2 · · · ζkN �Curvature N-point function

CMB N-point function �a�1m1a�2m2 · · · a�N mN �

CMB estimator

E =
�

�imi

�a�1m1a�2m2 · · · a�N mN �
N�

i=1

ã�imi + · · ·

O O = π̇3
O = π̇4
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Computational difficulties
Example:       interactionπ̇3

π̇3
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k3

�ζk1ζk2ζk3� ∝
� 0
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dτ

τ2e(k1+k2+k3)τ

k1k2k3

=
2

k1k2k3(k1 + k2 + k3)3

Computing the curvature 3-point function is straightforward....
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Computational difficulties

�a�1m1a�2m2a�3m3� =
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(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π
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CMB transfer function (computed numerically)

...but subsequent steps look intractable in full generality:

CMB three-point function: 4D oscillatory integral for each

E =
�

�imi

�a�1m1a�2m2a�3m3� ã�1m1 ã�2m2 ã�3m3 + · · ·

(�i, mi)

CMB estimator: number of terms in sum is O(�5max)

observed CMB multiples (appropriately filtered)
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Factorizability = computability
Suppose the curvature 3-point function is factorizable

�ζk1ζk2ζk3� = f1(k1)f2(k2)f3(k3) + 5 perm.

Komatsu, Spergel & Wandelt 2003
Creminelli, Nicolis, Senatore, Tegmark & Zaldarriaga 2005

KMS & Zaldarriaga 2006
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π
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CMB three-point function is fast to compute:

CMB estimator is fast to evaluate:
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Making shapes factorizable
Two possibilities for making shape factorizable

 1. approximate by a factorizable shape (“template shape”)

 2. perform an algebraic magic trick, e.g. find integral representation

e.g.       shape: 
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−
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equilateral template

�ζk1ζk2ζk3� =
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k1k2k3(k1 + k2 + k3)3

KMS & Zaldarriaga 2006
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Factorizability + Feynman diagrams
Observation: for       shape,  the integral representation is just 
undoing the last step of the Feynman diagram calculation

π̇3

π̇3
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�ζk1ζk2ζk3� ∝
� 0

−∞
dτ

τ2e(k1+k2+k3)τ

k1k2k3

=
2

k1k2k3(k1 + k2 + k3)3

Generalizes to any tree diagram, e.g. 4-point estimators:

Smith, Senatore & Zaldarriaga, to appear

k2
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Factorizability + Feynman diagrams
Ultimate generalization of KSW construction: “Estimator” Feynman 
rules which go directly from the diagram to the CMB estimator

external line = CMB + harmonic-space factor 

vertex = 

α�(r, t)ã�m

N-way real-space product
�

r2dr dt
� �

internal line = harmonic-space factor A�(r, t, r�, t�)
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e.g.
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Example: resonant NG
Just an example to illustrate the power of this method in finding a 
factorizable representation...
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Hard to see how this could ever be made factorizable, but going
back to the physics gives the following factorizable representation!
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Example: quasi single field inflation

k1
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Sπ =
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d4x
√
−g

�
1
2
(∂π)2 +
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2
(∂σ)2 − M2

2
σ2 + ρπ̇σ − g

3!
σ3

�

k1 k2

k3 k4

�ζk1ζk2ζk3� ∝ gρ3 �ζk1ζk2ζk3ζk4� ∝ g2ρ4

Because 3-point function and 4-point function depend on 
different combinations of parameters, either one can have larger 

signal-to-noise in different parts of the QSFI parameter space
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Data analysis “to do” list...

For any “physical” shape, current machinery seems to be 
sufficient to do the analysis!  A (possibly incomplete) to do list:

• Higher derivative shapes
• Quartic interactions
• Quasi single-field inflation
• Solid inflation 
• Anything else... ?

(...π 3,
...
ππ2

ijk, · · · )
(π̇4, π̇2∂iπ

2, ∂iπ
2∂jπ

2, · · · )
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Large-scale structure
Local model: ζ(x) = ζG(x) +

3
5
fNLζG(x)2

Non-Gaussian contribution to halo bias on large scales:

b(k) ≈ b0 + fNL
b1

(k/aH)2 k → 0as

Phh(k)− 1/n
Pmh(k)
Pmm(k)Phh(k) ≈ b(k)2Pmm(k)

Pmh(k) ≈ b(k)Pmm(k)

Constraints are ultimately
   better than the CMB

Planck:
LSST:

σ(fNL) = 5
σ(fNL) ∼ 1
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NG halo bias: interpretation
Correlation between long-wavelength mode and small-scale power

Three-point function is large in squeezed triangles 

�ζkLζkSζkS� ∝ fNL
1

k3
Lk3

S

kS

kS

kL

Locally measured fluctuation amplitude         near a point x
depends on value of Newtonian potential 

σloc
8
Φ(x)

σloc
8 = σ̄8(1 + 2fNLΦ)

Φ > 0
Φ < 0
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NG halo bias: interpretation
This picture naturally leads to enhanced large-scale clustering

σloc
8 = σ̄8(1 + 2fNLΦ)
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+ b1fNLΦ

=
�

b0 + b1
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(k/aH)2
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δρm
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General expression for non-Gaussian clustering

Baumann, Ferraro, Green & KMS 2012

∼ (5 Mpc)−1

∼ (5 Mpc)−1 ∼ (5 Mpc)−1

∼ (5 Mpc)−1∼ (5 Mpc)−1

fN (k) =
�

ki

�ζkζk1 · · · ζkN−1� k

k

Schematic form:

gMN (k) =
�

P
ki=kP
k�

j=−k

�ζk1 · · · ζkM ζk�
1

· · · ζk�
N
�

∼ (5 Mpc)−1

∼ (5 Mpc)−1

Pmh(k) =

�
b0 +

∞�

N=1

bNfN+2(k)

�
Pmm(k)

Phh(k) =

�
b2
0 + 2

∞�

N=1

b0bNfN+2(k) +
�

MN

bMbNgM+1,N+1(k)

�
Pmm(k)

“squeezed limit”

“collapsed limit”
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Example 1: bias from squeezed 4-point function

Simple example of non-Gaussian model 
whose 4-point function
is large in the squeezed limit              .k1 → 0

�ζk1ζk2ζk3ζk4�

ζ = ζG + gNLζ3
G k1

k2

k3

Scale dependence of bias is 
same as          model

Mass and redshift dependence
are different, but hard in practice
to discriminate         and

f loc
NL

Smith, Ferraro & LoVerde 2011

k4

model:gNL

f loc
NL gNL
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Example 2: stochastic bias from collapsed 4-pt

�ζk1ζk2ζk3� =
6
5
fNL(Pζ(k1)Pζ(k2) + 2 perm.)

τNL model: 

�ζk1ζk2ζk3ζk4� = 2τNL

�
Pζ(k1)Pζ(k2)Pζ(|k1 + k3|) + 23 perm.

�

In simple local model                                    one has  (ζ = ζG + 3
5fNLζ2

G)
τNL = ( 6

5fNL)2 but in general                    can be independentfNL, τNL

k1

k2

k3

k4

kS

kS

kL

fNL
τNL
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Example 2: stochastic bias from collapsed 4-pt

Smith & LoVerde 2010

Our general expression predicts the following:

Pmh(k) =
�

b0 + b1
fNL

(k/aH)2

�
Pmm(k)

Qualitative prediction of          model: “stochastic” halo biasτNL

Matter and halo fields are not proportional on large scales

Gives some scope for distinguishing                   : 

Phh(k) =
�

b
2
0 + 2b0b1

fNL

(k/aH)2
+ b

2
1

25
36τNL

(k/aH)4

�
Pmm(k)

fNL, τNL

• Different bias values inferred from 
• Different tracer populations are not 100% correlated
• Even with a single population, can separate                  terms 

Pmh(k), Phh(k)

k−2, k−4
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Example: quasi-single field inflation
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3!
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Squeezed/collapsed limits (where                                      )

lim
kL→0

�ζkLζkS ζkS � ∝ gρ3

�
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k3−α
L k3+α
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|k1+k2|→0

�ζk1ζk2ζk3ζk4� ∝ g2ρ4

�
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|k1 + k2|3−2α k3+α
1 k3+α

3

�

Prediction: bias is mostly stochastic (                        is enhanced
relative to the square of                       )

Prediction: non-Gaussian bias has spectral index given by

b(k) = b0 + b1
gρ

3

(k/aH)2−α

“τNL”= g2ρ4

“fNL”= gρ3
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Large-scale structure: general picture

Large-scale structure constraints are best understood as precise tests 
of statistical homogeneity of the universe on large scales  

Non-Gaussian models with large squeezed limits can be interpreted
as large-scale inhomogeneity in statistics of small-scale modes, e.g:

∼ (5 Mpc)−1

∼ (5 Mpc)−1

∼ (5 Mpc)−1

∼ 10−3 Mpc−1

∼ (5 Mpc)−1 ∼ (5 Mpc)−1

∼ (5 Mpc)−1∼ (5 Mpc)−1

∼ 10−3 Mpc−1

large-scale correlation 
between density and 
small-scale skewness

large-scale inhomogeneity
in small-scale power,

uncorrelated to density
(“stochastic”)
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Conclusions and future outlook

CMB:
Can measure N-point correlation function
with full shape discrimination.  “One estimator per diagram”

�Tl1Tl2 · · · TlN �

Statistical machinery is mature but many shapes unanalyzed!

Large-scale structure:

Future constraints on some models (e.g.        ) better than CMB  f loc
NL

Models without squeezed limits (e.g. single field) unconstrained

Difficult to separate different N-point shapes (or different values 
of N) but some scope for discriminating models based on spectral
index of the halo bias and stochastic vs non-stochastic bias
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