Signatures of primordial NG in CMB and LSS

Kendrick Smith (Princeton/Perimeter)
Munich, November 2012

Primordial non-G + observations

1. CMB: can we independently constrain every interesting non-Gaussian signal?
2. Large-scale structure: what non-Gaussian signals can be constrained, and what are the degeneracies?

EFT of inflation

$\pi=$ Goldstone boson of spontaneously broken time translations
1-1 correspondence between operators in S_{π} and $f_{N L}$-like parameters (Degree-N operator shows up in N -point CMB correlation function)

$$
\begin{aligned}
& S_{\pi}= \int d^{4} x \sqrt{-g}\left(-\dot{H} M_{\mathrm{pl}}^{2}\right)\left[\frac{\dot{\pi}^{2}}{c_{s}^{2}}-\frac{\left(\partial_{i} \pi\right)^{2}}{a^{2}}\right. \\
&+\frac{A}{c_{s}^{2}} \pi_{t}^{3}+\frac{1-c_{s}^{2}}{c_{s}^{2}} \frac{\pi_{t}\left(\partial_{i} \pi\right)^{2}}{a^{2}} \\
&+B \pi_{t t t}^{3}+C \pi_{t t t} \pi_{i j k}^{2}+\cdots \quad \begin{array}{r}
\text { Equilateral+orthogonal 3-point shapes } \\
\text { (Senatore, KMS \& Zaldarriaga 2009) }
\end{array} \\
&+D \dot{\pi}^{4}+E \dot{\pi}^{2}\left(\partial_{i} \pi\right)^{2}+F\left(\partial_{i} \pi\right)^{2}\left(\partial_{j} \pi\right)^{2}+\begin{array}{r}
\text { Higher-derivative 3-point shapes } \\
\text { (Senatore \& Zaldarriaga 2009) }
\end{array} \\
&+\rho \dot{\pi} \sigma+G \sigma^{3}+\cdots \\
& \text { Quasi single-field inflation } \\
& \text { (Chen \& Wang 2009) }
\end{aligned}
$$

CMB data analysis

Degree-N operator \mathcal{O} (e.g. $\mathcal{O}=\dot{\pi}^{3}$ or $\mathcal{O}=\dot{\pi}^{4}$)

Curvature N-point function $\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \cdots \zeta_{\mathbf{k}_{N}}\right\rangle$

CMB N-point function $\left\langle a_{\ell_{1} m_{1}} a_{\ell_{2} m_{2}} \cdots a_{\ell_{N} m_{N^{*}}}\right\rangle$

CMB estimator
$\mathcal{E}=\sum_{\ell_{i} m_{i}}\left\langle a_{\ell_{1} m_{1}} a_{\ell_{2} m_{2}} \cdots a_{\ell_{N} m_{N}}\right\rangle \prod_{i=1}^{N} \tilde{a}_{\ell_{i} m_{i}}+\cdots$

Computational difficulties

Example: $\dot{\pi}^{3}$ interaction
Computing the curvature 3-point function is straightforward....

$$
\begin{aligned}
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle & \propto \int_{-\infty}^{0} d \tau \frac{\tau^{2} e^{\left(k_{1}+k_{2}+k_{3}\right) \tau}}{k_{1} k_{2} k_{3}} \\
& =\frac{2}{k_{1} k_{2} k_{3}\left(k_{1}+k_{2}+k_{3}\right)^{3}}
\end{aligned}
$$

Computational difficulties

...but subsequent steps look intractable in full generality:

CMB three-point function: 4D oscillatory integral for each $\left(\ell_{i}, m_{i}\right)$

$$
\begin{array}{r}
\left\langle a_{\ell_{1} m_{1}} a_{\ell_{2} m_{2}} a_{\ell_{3} m_{3}}\right\rangle=\sqrt{\frac{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)\left(2 \ell_{3}+1\right)}{4 \pi}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) \\
\times \int d r d k_{1} d k_{2} d k_{3}\left(\prod_{i=1}^{3} \frac{2 k_{i}^{2}}{\pi} j_{\ell_{i}}\left(k_{i} r\right) \Delta_{\ell_{i}}\left(k_{i}\right)\right)\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle \\
\text { CMB transfer function (computed numerically) }
\end{array}
$$

CMB estimator: number of terms in sum is $\mathcal{O}\left(\ell_{\max }^{5}\right)$

$$
\mathcal{E}=\sum_{\ell_{i} m_{i}}\left\langle a_{\ell_{1} m_{1}} a_{\ell_{2} m_{2}} a_{\ell_{3} m_{3}}\right\rangle \tilde{a}_{\ell_{1} m_{1}} \tilde{a}_{\ell_{2} m_{2}} \tilde{a}_{\ell_{3} m_{3}}+\cdots
$$

Factorizability = computability

Suppose the curvature 3-point function is factorizable

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=f_{1}\left(k_{1}\right) f_{2}\left(k_{2}\right) f_{3}\left(k_{3}\right)+5 \text { perm } .
$$

Define (and precompute) $\alpha_{\ell}^{(i)}(r)=\int \frac{2 k^{2} d k}{\pi} f_{i}(k) j_{\ell}(k r)$
CMB three-point function is fast to compute:

$$
\begin{aligned}
\left\langle a_{1_{1} m_{1}} \alpha_{2} m_{2} a_{\ell_{3} m_{3}}\right\rangle= & \sqrt{\frac{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)\left(2 \ell_{3}+1\right)}{4 \pi}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) \\
& \times \int d r r^{2} \alpha_{\ell_{1}^{(1)}(r) \alpha_{2}^{(2)}(r) \alpha_{\ell_{3}}^{(3)}(r)+5 \text { perm. }}
\end{aligned}
$$

CMB estimator is fast to evaluate:

$$
\mathcal{E}=\int r^{2} d r \int d^{2} \mathbf{n} \prod_{i=1}^{3}\left(\sum_{\ell m} \alpha_{\ell}^{(i)} \tilde{a}_{\ell m} Y_{\ell m}(\mathbf{n})\right)
$$

Making shapes factorizable

Two possibilities for making shape factorizable

$$
\text { e.g. } \dot{\pi}^{3} \text { shape: }\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=\frac{2}{k_{1} k_{2} k_{3}\left(k_{1}+k_{2}+k_{3}\right)^{3}}
$$

1. approximate by a factorizable shape ("template shape")

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle \approx \frac{-\sum_{i} k_{i}^{3}+\sum_{i \neq j} k_{i} k_{j}^{2}-2 k_{1} k_{2} k_{3}}{k_{1}^{3} k_{2}^{3} k_{3}^{3}}
$$

2. perform an algebraic magic trick, e.g. find integral representation

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=\int_{-\infty}^{0} t^{2} d t\left(\frac{e^{t k_{1}}}{k_{1}}\right)\left(\frac{e^{t k_{2}}}{k_{2}}\right)\left(\frac{e^{t k_{3}}}{k_{3}}\right)
$$

Factorizability + Feynman diagrams

Observation: for $\dot{\pi}^{3}$ shape, the integral representation is just undoing the last step of the Feynman diagram calculation

$$
\begin{aligned}
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle & \propto \int_{-\infty}^{0} d \tau \frac{\tau^{2} e^{\left(k_{1}+k_{2}+k_{3}\right) \tau}}{k_{1} k_{2} k_{3}} \\
& =\frac{2}{k_{1} k_{2} k_{3}\left(k_{1}+k_{2}+k_{3}\right)^{3}}
\end{aligned}
$$

Generalizes to any tree diagram, e.g. 4-point estimators:

Smith, Senatore \& Zaldarriaga, to appear

Factorizability + Feynman diagrams

Ultimate generalization of KSW construction: "Estimator" Feynman rules which go directly from the diagram to the CMB estimator
$\longrightarrow \quad$ external line $=\mathrm{CMB}+$ harmonic-space factor $\alpha_{\ell}(r, t) \tilde{a}_{\ell m}$人 vertex $=\int r^{2} d r d t(\mathrm{~N}$-way real-space product $)$
internal line $=$ harmonic-space factor $A_{\ell}\left(r, t, r^{\prime}, t^{\prime}\right)$

$$
\mathcal{E}=\int r^{2} d r d t\left(\sum_{\ell m} \alpha_{\ell}(r, t) \tilde{a}_{\ell m} Y_{\ell m}(\mathbf{n})\right)^{3}
$$

Example: resonant NG

Just an example to illustrate the power of this method in finding a factorizable representation...

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle \propto \frac{1}{k_{1}^{2} k_{2}^{2} k_{3}^{2}}\left[\sin \left(A \log \frac{k_{1}+k_{2}+k_{3}}{k_{*}}\right)+A^{-1} \sum_{i \neq j} \frac{k_{i}}{k_{j}} \cos \left(A \log \frac{k_{1}+k_{2}+k_{3}}{k_{*}}\right)\right]
$$

Hard to see how this could ever be made factorizable, but going back to the physics gives the following factorizable representation!

$$
\begin{aligned}
& \left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle \propto \operatorname{Re}\left[\frac{e^{(1+i A) \log (i+i A)+i A \log k_{*}}}{A \Gamma(1+i A)} \int_{-\infty}^{\infty} d x e^{(1+i A) x} g\left(k_{1}, x\right) g\left(k_{2}, x\right) g\left(k_{3}, x\right)\right. \\
& \left.\quad \times\left(\left(1+\frac{i A}{2}\right) \frac{1}{k_{1} k_{2}^{2} k_{3}^{2}}+\frac{1}{k_{2}^{2} k_{3}^{3}}+\frac{1}{k_{1} k_{2} k_{3}^{3}}+5 \text { perm. }\right)\right] \\
& g(k, x)=\exp \left[-(1+i A) k e^{x}\right]
\end{aligned}
$$

Example: quasi single field inflation

$S_{\pi}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2}(\partial \pi)^{2}+\frac{1}{2}(\partial \sigma)^{2}-\frac{M^{2}}{2} \sigma^{2}+\rho \dot{\pi} \sigma-\frac{g}{3!} \sigma^{3}\right)$

Because 3-point function and 4-point function depend on different combinations of parameters, either one can have larger signal-to-noise in different parts of the QSFI parameter space

Data analysis "to do" list...

For any "physical" shape, current machinery seems to be sufficient to do the analysis! A (possibly incomplete) to do list:

- Higher derivative shapes $\left(\dddot{\pi}^{3}, \dddot{\pi} \pi_{i j k}^{2}, \cdots\right)$
- Quartic interactions $\left(\dot{\pi}^{4}, \dot{\pi}^{2} \partial_{i} \pi^{2}, \partial_{i} \pi^{2} \partial_{j} \pi^{2}, \cdots\right)$
- Quasi single-field inflation
- Solid inflation
- Anything else... ?

Large-scale structure

Local model: $\quad \zeta(\mathbf{x})=\zeta_{G}(\mathbf{x})+\frac{3}{5} f_{N L} \zeta_{G}(\mathbf{x})^{2}$
Non-Gaussian contribution to halo bias on large scales:

$$
b(k) \approx b_{0}+f_{N L} \frac{b_{1}}{(k / a H)^{2}} \quad \text { as } k \rightarrow 0
$$

$P_{m h}(k) \approx b(k) P_{m m}(k)$
$P_{h h}(k) \approx b(k)^{2} P_{m m}(k)$

Constraints are ultimately better than the CMB

Planck: $\sigma\left(f_{N L}\right)=5$
LSST: $\quad \sigma\left(f_{N L}\right) \sim 1$

NG halo bias: interpretation

Correlation between long-wavelength mode and small-scale power

Three-point function is large in squeezed triangles

$$
\left\langle\zeta_{\mathbf{k}_{\mathbf{L}}} \zeta_{\mathbf{k}_{\mathbf{S}}} \zeta_{\mathbf{k}_{\mathbf{s}}}\right\rangle \propto f_{N L} \frac{1}{k_{L}^{3} k_{S}^{3}} \stackrel{k_{S}}{k_{S}} k_{L}
$$

Locally measured fluctuation amplitude $\sigma_{8}^{\text {loc }}$ near a point x depends on value of Newtonian potential $\Phi(\mathbf{x})$

$$
\sigma_{8}^{\mathrm{loc}}=\bar{\sigma}_{8}\left(1+2 f_{N L} \Phi\right)
$$

NG halo bias: interpretation

This picture naturally leads to enhanced large-scale clustering

$$
\begin{aligned}
\frac{\delta n_{h}}{\bar{n}_{h}} & =\underbrace{\frac{\partial \log n_{h}}{\partial \log \rho_{m}}}_{b_{0}} \frac{\delta \rho_{m}}{\bar{\rho}_{m}}+\underbrace{\frac{\partial \log n_{h}}{\partial \log \sigma_{8}}}_{b_{1} / 2} \frac{\delta \sigma_{8}}{\bar{\sigma}_{8}} \\
& =b_{0} \frac{\sigma_{8}^{\mathrm{loc}}=\bar{\sigma}_{8}\left(1+2 f_{N L} \Phi\right)}{\bar{\rho}_{m}}+b_{1} f_{N L} \Phi \\
& =\left(b_{0}+b_{1} \frac{f_{N L}}{(k / a H)^{2}}\right) \frac{\delta \rho_{m}}{\bar{\rho}_{m}}
\end{aligned}
$$

General expression for non-Gaussian clustering

Schematic form:

$$
\begin{gathered}
P_{m h}(k)=\left(b_{0}+\sum_{N=1}^{\infty} b_{N} f_{N+2}(k)\right) P_{m m}(k) \\
f_{N}(k)=\int_{\mathbf{k}_{i}}\left\langle\zeta_{\mathbf{k}} \zeta_{\mathbf{k}_{1}} \cdots \zeta_{\mathbf{k}_{N-1}}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& P_{h h}(k)=\left(b_{0}^{2}+2 \sum_{N=1}^{\infty} b_{0} b_{N} f_{N+2}(k)+\sum_{M N} b_{M} b_{N} g_{M+1, N+1}(k)\right) P_{m m}(k) \\
& g_{M N}(k)=\int_{\sum_{\sum}^{\sum \mathbf{k}_{i}=\mathbf{k}_{j}^{\prime}=-\mathbf{k}}}\left\langle\zeta_{\mathbf{k}_{1}} \cdots \zeta_{\mathbf{k}_{M}} \zeta_{\mathbf{k}_{1}^{\prime}} \cdots \zeta_{\mathbf{k}_{N}^{\prime}}\right\rangle
\end{aligned}
$$

Example 1: bias from squeezed 4-point function

$g_{N L}$ model:

$$
\zeta=\zeta_{G}+g_{N L} \zeta_{G}^{3}
$$

Simple example of non-Gaussian model whose 4-point function $\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \zeta_{\mathbf{k}_{4}}\right\rangle$
 is large in the squeezed limit $k_{1} \rightarrow 0$.

Scale dependence of bias is same as $f_{N L}^{\text {loc }}$ model

Mass and redshift dependence are different, but hard in practice to discriminate $f_{N L}^{\text {loc }}$ and $g_{N L}$

Smith, Ferraro \& LoVerde 2011

Example 2: stochastic bias from collapsed 4-pt

$\tau_{N L}$ model:

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{\mathbf{3}}}\right\rangle=\frac{6}{5} f_{N L}\left(P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)+2 \text { perm. }\right)
$$

$\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \zeta_{\mathbf{k}_{4}}\right\rangle=2 \tau_{N L}\left[P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right) P_{\zeta}\left(\left|\mathbf{k}_{1}+\mathbf{k}_{3}\right|\right)+23\right.$ perm. $]$

In simple local model $\left(\zeta=\zeta_{G}+\frac{3}{5} f_{N L} \zeta_{G}^{2}\right)$ one has
$\tau_{N L}=\left(\frac{6}{5} f_{N L}\right)^{2}$ but in general $f_{N L}, \tau_{N L}$ can be independent

$$
\stackrel{k_{N L}}{k_{S}} k_{S} k_{L}
$$

$\tau_{N L}$

Example 2: stochastic bias from collapsed 4-pt

Our general expression predicts the following:

$$
\begin{aligned}
P_{m h}(k) & =\left(b_{0}+b_{1} \frac{f_{N L}}{(k / a H)^{2}}\right) P_{m m}(k) \\
P_{h h}(k) & =\left(b_{0}^{2}+2 b_{0} b_{1} \frac{f_{N L}}{(k / a H)^{2}}+b_{1}^{2} \frac{\frac{25}{36} \tau_{N L}}{(k / a H)^{4}}\right) P_{m m}(k)
\end{aligned}
$$

Qualitative prediction of $\tau_{N L}$ model: "stochastic" halo bias Matter and halo fields are not proportional on large scales

Gives some scope for distinguishing $f_{N L}, \tau_{N L}$:

- Different bias values inferred from $P_{m h}(k), P_{h h}(k)$
- Different tracer populations are not 100% correlated
- Even with a single population, can separate k^{-2}, k^{-4} terms

Example: quasi-single field inflation

$S_{\pi}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2}(\partial \pi)^{2}+\frac{1}{2}(\partial \sigma)^{2}-\frac{M^{2}}{2} \sigma^{2}+\rho \dot{\pi} \sigma-\frac{g}{3!} \sigma^{3}\right)$
Squeezed/collapsed limits (where $\alpha=\frac{3}{2}-\sqrt{\frac{9}{4}-\frac{M^{2}}{H^{2}}}$)

$$
\lim _{k_{L} \rightarrow 0}\left\langle\zeta_{\mathbf{k}_{L}} \zeta_{\mathbf{k}_{S}} \zeta_{\mathbf{k}_{S}}\right\rangle \propto g \rho^{3}\left(\frac{1}{k_{L}^{3-\alpha} k_{S}^{3+\alpha}}\right)
$$

$\lim _{\mathbf{k}_{1}+\mathbf{k}_{2} \mid \rightarrow 0}\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \zeta_{\mathbf{k}_{4}}\right\rangle \propto g^{2} \rho^{4}\left(\frac{1}{\left|\mathbf{k}_{1}+\mathbf{k}_{2}\right|^{3-2 \alpha} k_{1}^{3+\alpha} k_{3}^{3+\alpha}}\right)$
Prediction: non-Gaussian bias has spectral index given by

$$
b(k)=b_{0}+b_{1} \frac{g \rho^{3}}{(k / a H)^{2-\alpha}}
$$

Prediction: bias is mostly stochastic (" $\tau_{N L}$ " $=g^{2} \rho^{4}$ is enhanced relative to the square of " $f_{N L} "=g \rho^{3}$)

Large-scale structure: general picture

Large-scale structure constraints are best understood as precise tests of statistical homogeneity of the universe on large scales

Non-Gaussian models with large squeezed limits can be interpreted as large-scale inhomogeneity in statistics of small-scale modes, e.g:

large-scale correlation between density and small-scale skewness

large-scale inhomogeneity in small-scale power, uncorrelated to density
("stochastic")

Conclusions and future outlook

CMB:
Can measure N-point correlation function $\left\langle T_{1_{1}} T_{1_{2}} \cdots T_{1_{N}}\right\rangle$ with full shape discrimination. "One estimator per diagram"

Statistical machinery is mature but many shapes unanalyzed!

Large-scale structure:

Future constraints on some models (e.g. $f_{N L}^{\text {loc }}$) better than CMB
Models without squeezed limits (e.g. single field) unconstrained
Difficult to separate different N -point shapes (or different values of N) but some scope for discriminating models based on spectral index of the halo bias and stochastic vs non-stochastic bias

