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DATA PROCESSING

Part 1: Raw data to TOI
-detector
-pointing
-orbit
-timing

Combines & compresses 
data into usable form



DATA PROCESSING

Part 2: TOI processing
-De-modulation (Remove AC carrier wave)

-De-glitch (Remove cosmic ray strikes)

-Volts to Temp (Correct for non-linear gain and gain variation)

-Thermal decorrelation (Remove temp fluctuation using dark bolometers)

-Remove cooler systematics (EM interference, Micro-phonics)

-Deconvolve bolometer time constant (Correct time response)



DATA PROCESSING

Part 3: TOI to Map
-De-stripe to create rings (Remove low frequency correlated noise)

-Add rings (correcting with offsets from de-striping algorithm)

 
Part 4: Clean Map
-Beam deconvolution
-Foreground removal (Dust, etc..)

-Point source



SIMULATION

Part 1: 
 

Part 2:  

Part 3:

alm = bl
p
Cl ⇥ RNG

M(n̂) =
X

lm

almYlm(n̂) +N(n̂)

N(n̂) =
ANp
HC(n̂)

⇥ RNG

Error is statistical, and around 0. So 30 +/- 20 is really saying:
30 is consistent with 0 +/- 20
A detection of fnl would need more 



ESTIMATION
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Suppose we have a bispectrum we wish to constrain

(Bl1l2l3
m1m2m3

)Theory

Which has some amplitude parameter     fNL

The maximum likelihood estimator for       isfNL

Cl1m1l2m2 = hal1m1al2m2i
where

E =
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PROJECTION
So how do we calculate it?

First we start with the primordial bispectrum.

h�(k1)�(k2)�(k3)i = (2⇡)3�(k1 + k2 + k3)B(k1, k2, k3)

Then project it forward with transfer functions....

Bl1l2l3
m1m2m3

=

Z
B(k1, k2, k3)�

l1l2l3
m1m2m3

(k1, k2, k3)
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Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).
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Z

Vk



PROBLEM
But...

�l1l2l3
m1m2m3

(k1, k2, k3) =

Z
d

3
x�̃l1m1(k1,x)�̃l2m2(k2,x)�̃l3m3(k3,x)

�̃l1m1(k1,x) = jl1(k1x)Yl1m1(x̂)�l1(k1)

To be solvable we need separability

B(k1, k2, k3) = X(k1)X(k2)X(k3)



SOLUTION?
The problem is that in general

B(k1, k2, k3) 6= X(k1)X(k2)X(k3)

We need to find a representation of B which is separable

B(k1, k2, k3) =
X

n

↵nRn(k1, k2, k3)

Rn(k1, k2, k3) = ri(k1)rj(k2)rk(k3) + 5 permutations

hRnRmi = �nm



ORTHONORMAL BASIS
• Now how to construct our R?
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Rn(k1, k2, k3) =
X

m

�nmQm(k1, k2, k3)

Qm(k1, k2, k3) =
1

6
(qi(k1)qj(k2)qk(k3) + 5 (permutations))

Where the q are arbitrary functions and        is the product of 
some orthogonalisation procedure. We must also chose an 
ordering

�nm
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where we use the notation {prs} to denote the six permutations of prs. Here, for convenience, we have
specified a one-to-one mapping n ⌅ {prs} ordering the permuted indices into a list labelled by n (see below).
Alternatively, we could directly represent bispectra in a power series using sums of monomial symmetric
polynomials which like (56) are also separable; that is, we could identify our set of basis functions with the
following

1, x + y + z , xy + yz + zx , x2 + y2 + z2, xyz , x3 + y3 + z3, etc. (57)

The Qn(x, y, z) we defined in (56) are themselves ultimately constructed from these through the qp products.
However, the Qn have two distinct advantages which are, first, they already have partial orthogonality
built in which improves their convenience and convergence and, secondly, unlike the elements of (57),
the qp polynomials remain bounded and well-behaved when convolved with transfer functions, as we shall
emphasise in the map-making discussion.

Since we will be dealing with relatively small numbers of basis functions, it is convenient to order the
symmetric products Qn = q{p qr qs} linearly with a single index n; here we o⇤er two comparable alternatives
for achieving this. The first is by ‘slicing’ such that triples are ordered by the sum p + r + s and the second
is by ‘distance’ from the origin, that is, p2 + r2 + s2.

Slicing the prs naturally groups the Qn by the overall order of the polynomials from which they are made.
The subscript n, with a specific choice of sub-ordering, relates to the prs via

0 ⇤ 000 4 ⇤ 111 8 ⇤ 022 12 ⇤ 113
1 ⇤ 001 5 ⇤ 012 9 ⇤ 013 13 ⇤ 023
2 ⇤ 011 6 ⇤ 003 10 ⇤ 004 14 ⇤ 014 (58)
3 ⇤ 002 7 ⇤ 112 11 ⇤ 122 15 ⇤ 005 · · · ,

where we have underlined the transitions between polynomial order. The number dN of independent
symmetric polynomial products QnQpQr which can be formed at each polynomial order N is a combinatorial
problem but the sequence begins as follows and we give a recurrence relation for any further elements:

{dN} = {1, 1, 2, 3, 4, 5, 7, 8, 10, 12, ...} , dN = 1 + dN�2 + dN�3 � dN�5 . (59)

For consistency when using slicing we will usually decompose functions with polynomials up to a specific
order N .

The distance ordering of the Qn is more straightforward with

0 ⇤ 000 2 ⇤ 011 4 ⇤ 002 6 ⇤ 112 8 ⇤ 122
1 ⇤ 001 3 ⇤ 111 5 ⇤ 012 7 ⇤ 022 9 ⇤ 003 · · · . (60)

This approach is the analogue of state counting over spherical shells in the continuum limit and the basis
functions can be grouped accordingly. Distance ordering has some advantage by reshu⌃ing to higher n the
pure states 00p which turn out to be most a⇤ected by masking.

While the Qn’s by construction are an independent set of three-dimensional basis functions on the domain
(40), they are not in general orthogonal. In fig. 7, we illustrate the inner product matrix �np =  Qn, Qp⌦,
showing partial orthogonality (nearly diagonal �np) because of their origin as products of orthogonal qr’s.
However, this is not su⇧cient because we need the convenience of a fully orthonormal basis to e⇧ciently
decompose arbitrary bispectra. For this reason, we undertake an iterative Gram-Schmidt orthogonalisation
process to construct an orthonormal set Rn from the Qn, that is, satisfying

 Rn, Rp⌦ = ⇥np . (61)

Formally, we have a Gram matrix � = ( Qn, Qp⌦) made from the independent functions Qn, and therefore
positive definite, which needs to be factorised as � = ⇥⇥⇥ where ⇥ = ( Qn, Rp⌦) is triangular (i.e. an LU
or Cholesky decomposition). As we require explicit relationships between Qn and Rn, we run through the
main steps in the Gram-Schmidt process.



ORTHONORMAL BASIS
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Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
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↵0 +↵1

+↵2 +↵3 +↵4 . . .

000 ! 1 001 ! k1 + k2 + k3

011 ! k1k2 + k2k3 + k3k1 002 ! k21 + k22 + k23 111 ! k1k2k3

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

=

B(k1, k2, k3)



ORTHONORMAL BASIS
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We can now use this method to calculate the estimator

E =
1

N

X

n

↵n�n

�

Q
n =

Z
d

3
xMi(x)Mj(x)Mk(x)

Mi(x) =
X

lm

q̃

i
lm(x)C�1

lml0m0al0m0

Q̃n =

Z
x

2
dxq̃

{i
l1m1

(x)q̃jl2m2
(x)q̃k}l3m3

(x)

q̃

i
lm(x) =

Z
dk qi(k)�l(k)jl(xk)Ylm(x̂)



KSW EXAMPLE
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q0(k) = k�1

q1(k) = 1

q2(k) = k

q3(k) = k2

0 ! 003

1 ! 012

2 ! 111

↵Q

local

= {2, 0, 0}
↵Q

equi

= {�1, 1, �2}

↵Q

ortho

= {�3, 3, �8}

If we consider the three models constrained by KSW we find 
they can be represented by the following choices of 

monomials for the q and an ordering which only includes 
scale invariant combinations.

The only difference is they never use orthonormality as they 
can read off the coefficients directly from their templates



KSW EXAMPLE

16

4E� L / O

4
60.19� � 1.52�

4
6

2 � 2⇥ 0.4 + 12
= �2.16�

s
hEEi
hLLi ⇡ 6

hELip
hEEi hLLi

⇡ 0.4



LATE TIME ESTIMATION

17

We will now go one step further by defining the weighted 
vectors (and matrix) 

Ē =
AT C�1B
AT C�1A

And we can then write the estimator in matrix form as

A} =
hal1m1al2m2al3m3ip

Cl1Cl2Cl3

, B} =
al1m1al2m2al3m3 � 3Cl1m1l2m2al3m3p

Cl1Cl2Cl3

, C}}0 =
Cl1m1l01m

0
1
...Cl3m3l03m

0
3p

Cl1Cl01
...Cl3Cl03

,



CMB BASIS
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We can perform the same modal decomposition on the data 
to obtain the estimator

↵̄ = R̄A ! A = R̄T ↵̄

�̄ = R̄B ! PB = R̄T �̄

E =
↵̄T ⇣�1�̄

↵̄T ⇣�1↵̄

h�̄i = ↵̄

⇣ = 6 R̄CR̄T =
⌦
�̄�̄T

↵



CMB BASIS
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=
↵0 ↵1

↵2 ↵3

↵4
......

+



ORTHONORMAL BASIS
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If we also calculate the decomposition of the primordial basis 
modes projected forward

Then we can transform between the primordial and CMB 
expansions

↵̄R = �↵R

⇣
↵̄Q = �̄���1T↵Q

⌘

✓
R̃l =

Z

Vk

R(k)⇥�

◆
R̄R̃T

= �



RECAP
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Separability = Tractability        
   Basis = Good 

18

Figure 8: Three-dimensional orthonormal polynomials Rn on the tetrahedral domain (40). Taken from top left (and moving
across and then down) these are R0, R1, R2, R3, R4, and R41 (bottom right).

E =
1

N

X

n

↵n�n

! !
!!

!!
� = R̄R̃T

ArXiv:1006.1642

E =
↵̄T ⇣�1�̄

↵̄T ⇣�1↵̄



LATE TIME EXAMPLES
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Rn(l1, l2, l3) =
X

m

�nmQm(l1, l2, l3)

Qm(l1, l2, l3) =
1

6
(qi(l1)qj(l2)qk(l3) + 5 (permutations))

Now:
q = Harmonic transform of SMHW for wavelet estimators
q = Top hat functions for binned estimators
q = Continuous functions for Modal estimators (eg 
polynomials, trigonometric functions...)



We have              so can reconstruct the best fit bispectrum to the 
data by using the     as our    . If we have constructed a primordial basis 

as well then we can use     to find the best fit primordial bispectrum

RECONSTRUCTION
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h�i = ↵
↵�

�



RECONSTRUCTION
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We can perform a blind search for excess variance

F 2
NL(N) =

NX

n,n0=0

�n⇣
�1
n,n0�n0

hF 2
NLi = N (Gaussian)

�F 2
NL =

p
2N (Gaussian)



CONTAMINANTS
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As we expect the covariance matrix to be the identity we can use 
principle component analysis to identify the shape of contaminants. 

We first calculate the covariance matrix for beta from simulations

And then find the rotation which diagonalises 
it. This is equivalent to performing an eigen 

decomposition. The result is that you obtain a 
new orthonormal basis but now your modes 
are uncorrelated and ordered from greatest 

to least variance. 

V �V T = D



CONTAMINANTS
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WMAP inhomogeneous noise
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CONTAMINANTS
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WMAP Mask
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CONTAMINANTS
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Point sources������
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