NON-GAUSSIANITY INTHE CMB: ANALYSIS ISSUES

Paul Shellard (DAMTP)

Michele Ligouri (Padova)

PLAN

Data processing
Error calculation

Estimators Blind checks
Signal identification

DATA PROCESSING

Part I: Raw data to TOI
Part 2:TOl processing
Part 3:TOI to Map
Part 4: Clean Map

DATA PROCESSING

Part I: Raw data to TOI
-detector
-pointing
-orbit
-timing
Combines \& compresses data into usable form

DATA PROCESSING

Part 2:TOI processing
-De-modulation (Remove AC carrier wave)
-De-glitch (Remove cosmic ray strikes)

- Volts to Temp (Correct for non-linear gain and gain variation)
-Thermal decorrelation (Remove temp fluctuation using dark bolometers)
-Remove cooler systematics (EM interference, Micro-phonics)
-Deconvolve bolometer time constant (Correct time response)

DATA PROCESSING

Part 3:TOI to Map
-De-stripe to create rings (Remove low frequency correlated noise)
-Add rings (correcting with offsets from de-striping algorithm)
Part 4: Clean Map
-Beam deconvolution
-Foreground removal (Dust, etc.)
-Point source

SIMULATION

$$
\text { Part I: } \quad a_{l m}=b_{l} \sqrt{C_{l}} \times \mathrm{RNG}
$$

$$
\begin{array}{ll}
\text { Part 2: } & N(\hat{\mathbf{n}})=\frac{A_{N}}{\sqrt{\mathrm{HC}(\hat{\mathbf{n}})}} \times \mathrm{RNG} \\
\text { Part 3: } & M(\hat{\mathbf{n}})=\sum_{l m} a_{l m} Y_{l m}(\hat{\mathbf{n}})+N(\hat{\mathbf{n}})
\end{array}
$$

Error is statistical, and around 0 . So $30+/-20$ is really saying: 30 is consistent with $0+/-20$
A detection of fnl would need more

ESTIMATION

Suppose we have a bispectrum we wish to constrain

$$
\left(B_{m_{1} m_{2} m_{3}}^{l_{1} l_{2} l_{3}}\right)^{\text {Theory }}
$$

Which has some amplitude parameter $f_{N L}$
The maximum likelihood estimator for $f_{N L}$ is
$\mathcal{E}=\frac{\sum_{l_{i} m_{i}}\left(B_{m_{1} m_{2} m_{3}}^{l_{1} l_{2} l_{3}}\right)_{f_{N L}=1}^{T h e o r y} C_{l_{1} m_{1} l_{1}^{\prime} m_{1}^{\prime}}^{-1} C_{l_{2} m_{2} l_{2}^{\prime} m_{2}^{\prime}}^{-1} C_{l_{3} m_{3} l_{3}^{\prime} m_{3}^{\prime}}^{-1} a_{l_{1}^{\prime} m_{1}^{\prime}}^{-1} a_{l_{2}^{\prime} m_{2}^{\prime}} a_{l_{3}^{\prime} m_{3}^{\prime}}}{\sum_{l_{i} m_{i}}\left(B_{m_{1} m_{2} m_{3}}^{l_{1} l_{2} l_{3}}\right)_{f_{N L}=1}^{T h e o r y} C_{l_{1} m_{1} l_{1}^{\prime} m_{1}^{\prime}}^{-1} C_{l_{2} m_{2} l_{2}^{\prime} m_{2}^{\prime}}^{-1} C_{l_{3} m_{3} l_{3}^{\prime} m_{3}^{\prime}}^{-1}\left(B_{m_{1}^{\prime} m_{2}^{\prime} m_{3}^{\prime}}^{l_{1}^{\prime} l_{2}^{\prime} l_{3}^{\prime}}\right)_{f_{N L}=1}^{T h e o r y}}$
where
$C_{l_{1} m_{1} l_{2} m_{2}}=\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}}\right\rangle$

PROJECTION

So how do we calculate it?

First we start with the primordial bispectrum.

$$
\left\langle\Phi\left(\mathbf{k}_{1}\right) \Phi\left(\mathbf{k}_{2}\right) \Phi\left(\mathbf{k}_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right)
$$

Then project it forward with transfer functions....

PROBLEM

But...

$$
\begin{aligned}
\Delta_{m_{1} m_{2} m_{3}}^{l_{1} l_{l} l_{3}}\left(k_{1}, k_{2}, k_{3}\right) & =\int d^{3} x \tilde{\Delta}_{l_{1} m_{1}}\left(k_{1}, \mathbf{x}\right) \tilde{\Delta}_{l_{2} m_{2}}\left(k_{2}, \mathbf{x}\right) \tilde{\Delta}_{l_{3} m_{3}}\left(k_{3}, \mathrm{x}\right) \\
\tilde{\Delta}_{l_{1} m_{1}}\left(k_{1}, \mathrm{x}\right) & =j_{l_{1}}\left(k_{1} x\right) Y_{l_{1} m_{1}}(\hat{x}) \Delta_{l_{1}}\left(k_{1}\right)
\end{aligned}
$$

To be solvable we need separability

$$
B\left(k_{1}, k_{2}, k_{3}\right)=X\left(k_{1}\right) X\left(k_{2}\right) X\left(k_{3}\right)
$$

SOLUTION?

The problem is that in general

$$
B\left(k_{1}, k_{2}, k_{3}\right) \neq X\left(k_{1}\right) X\left(k_{2}\right) X\left(k_{3}\right)
$$

We need to find a representation of B which is separable

$$
\begin{aligned}
B\left(k_{1}, k_{2}, k_{3}\right) & =\sum_{n} \alpha_{n} R_{n}\left(k_{1}, k_{2}, k_{3}\right) \\
R_{n}\left(k_{1}, k_{2}, k_{3}\right) & =r_{i}\left(k_{1}\right) r_{j}\left(k_{2}\right) r_{k}\left(k_{3}\right)+5 \text { permutations } \\
\left\langle R_{n} R_{m}\right\rangle & =\delta_{n m}
\end{aligned}
$$

ORTHONORMAL BASIS

- Now how to construct our R?

$$
\begin{aligned}
R_{n}\left(k_{1}, k_{2}, k_{3}\right) & =\sum_{m} \lambda_{n m} Q_{m}\left(k_{1}, k_{2}, k_{3}\right) \\
Q_{m}\left(k_{1}, k_{2}, k_{3}\right) & =\frac{1}{6}\left(q_{i}\left(k_{1}\right) q_{j}\left(k_{2}\right) q_{k}\left(k_{3}\right)+5(\text { permutations })\right)
\end{aligned}
$$

Where the q are arbitrary functions and $\lambda_{n m}$ is the product of some orthogonalisation procedure. We must also chose an ordering

$\underline{0 \rightarrow 000}$	$4 \rightarrow 111$	$8 \rightarrow 022$	$12 \rightarrow 113$
$\underline{1 \rightarrow 001}$	$5 \rightarrow 012$	$9 \rightarrow 013$	$13 \rightarrow 023$
$2 \rightarrow 011$	$\underline{6 \rightarrow 003}$	$\underline{10 \rightarrow 004}$	$14 \rightarrow 014$
$\underline{3 \rightarrow 002}$	$7 \rightarrow 112$	$11 \rightarrow 122$	$\underline{15 \rightarrow 005} \cdots$

ORTHONORMAL BASIS

ORTHONORMAL BASIS

We can now use this method to calculate the estimator

$$
\begin{aligned}
\mathcal{E} & =\frac{1}{N} \sum_{n} \alpha_{n} \beta_{n} \\
\beta_{n}^{Q} & =\int d^{3} x M_{i}(\mathbf{x}) M_{j}(\mathbf{x}) M_{k}(\mathbf{x}) \\
M_{i}(\mathbf{x}) & =\sum_{l m} \tilde{q}_{l m}^{i}(\mathbf{x}) C_{l m l^{\prime} m^{\prime}}^{-1} a_{l^{\prime} m^{\prime}} \\
\tilde{Q}_{n} & =\int x^{2} d x \tilde{q}_{l_{1} m_{1}}^{\{i}(x) \tilde{q}_{l_{2} m_{2}}^{j}(x) \tilde{q}_{l_{3} m_{3}}^{k\}}(x) \\
\tilde{q}_{l m}^{i}(\mathbf{x}) & =\int d k q_{i}(k) \Delta_{l}(k) j_{l}(x k) Y_{l m}(\hat{\mathbf{x}})
\end{aligned}
$$

KSW EXAMPLE

If we consider the three models constrained by KSW we find they can be represented by the following choices of monomials for the q and an ordering which only includes scale invariant combinations.

$$
\begin{array}{llc}
q_{0}(k)=k^{-1} & 0 \rightarrow 003 & \alpha_{\text {local }}^{Q}=\{2,0,0\} \\
q_{1}(k)=1 & 1 \rightarrow 012 & \alpha_{\text {equi }}^{Q}=\{-1,1,-2\} \\
q_{2}(k)=k & 2 \rightarrow 111 & \alpha_{\text {ortho }}^{Q}=\{-3,3,-8\} \\
q_{3}(k)=k^{2} & &
\end{array}
$$

The only difference is they never use orthonormality as they can read off the coefficients directly from their templates

KSW EXAMPLE

$$
4 \mathrm{E}-\mathrm{L} \propto \mathrm{O}
$$

$$
\frac{\frac{4}{6} 0.19 \sigma-1.52 \sigma}{\frac{4}{6}^{2}-2 \times 0.4+1^{2}}=-2.16 \sigma
$$

$$
\frac{\langle E L\rangle}{\sqrt{\langle E E\rangle\langle L L\rangle}} \approx 0.4 \quad \sqrt{\frac{\langle E E\rangle}{\langle L L\rangle}} \approx 6
$$

LATE TIME ESTIMATION

We will now go one step further by defining the weighted vectors (and matrix)
$\mathcal{A}_{\wp}=\frac{\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}} a_{l_{3} m_{3}}\right\rangle}{\sqrt{C_{l_{1}} C_{l_{2}} C_{l_{3}}}}, \quad \mathcal{B}_{\wp}=\frac{a_{l_{1} m_{1}} a_{l_{2} m_{2}} a_{l_{3} m_{3}}-3 C_{l_{1} m_{1} l_{2} m_{2}} a_{l_{3} m_{3}}}{\sqrt{C_{l_{1}} C_{l_{2}} C_{l_{3}}}}, \quad \mathcal{C}_{\wp \wp \wp^{\prime}}=\frac{C_{l_{1} m_{1} l_{1}^{\prime} m_{1}^{\prime}} \ldots C_{l_{3} m_{3} l_{3}^{\prime} m_{3}^{\prime}}}{\sqrt{C_{l_{1}} C_{l_{1}^{\prime}} \ldots C_{l_{3}} C_{l_{3}^{\prime}}^{\prime}}}$,

And we can then write the estimator in matrix form as

$$
\overline{\mathcal{E}}=\frac{\mathcal{A}^{T} \mathcal{C}^{-1} \mathcal{B}}{\mathcal{A}^{T} \mathcal{C}^{-1} \mathcal{A}}
$$

CMB BASIS

We can perform the same modal decomposition on the data to obtain the estimator

$$
\begin{aligned}
& \bar{\alpha}=\overline{\mathcal{R}} \mathcal{A} \rightarrow \mathcal{A}=\overline{\mathcal{R}}^{T} \bar{\alpha} \\
& \bar{\beta}= \overline{\mathcal{R}} \mathcal{B} \rightarrow \mathcal{P B}=\overline{\mathcal{R}}^{T} \bar{\beta} \quad\langle\bar{\beta}\rangle=\bar{\alpha} \\
& \zeta= 6 \overline{\mathcal{R} C} \overline{\mathcal{R}}^{T}=\left\langle\bar{\beta} \bar{\beta}^{T}\right\rangle \\
& \mathcal{E}=\frac{\bar{\alpha}^{T} \zeta^{-1} \bar{\beta}}{\bar{\alpha}^{T} \zeta^{-1} \bar{\alpha}}
\end{aligned}
$$

CMB BASIS

α_{1}

ORTHONORMAL BASIS

If we also calculate the decomposition of the primordial basis modes projected forward

$$
\overline{\mathcal{R}} \tilde{\mathcal{R}}^{T}=\Gamma \quad\left(\tilde{\mathcal{R}}_{l}=\int_{\mathcal{V}_{k}} \mathcal{R}(k) \times \Delta\right)
$$

Then we can transform between the primordial and CMB expansions

$$
\begin{aligned}
\bar{\alpha}^{\mathcal{R}} & =\Gamma \alpha^{\mathcal{R}} \\
\left(\bar{\alpha}^{\mathcal{Q}}\right. & \left.=\bar{\lambda} \Gamma \lambda^{-1^{T}} \alpha^{\mathcal{Q}}\right)
\end{aligned}
$$

RECAP

Separability = Tractability
Basis $=$ Good

ArXiv: I 006.I 642

$$
\begin{gathered}
\text { LATETIME EXAMPLES } \\
R_{n}\left(l_{1}, l_{2}, l_{3}\right)=\sum_{m} \lambda_{n m} Q_{m}\left(l_{1}, l_{2}, l_{3}\right) \\
Q_{m}\left(l_{1}, l_{2}, l_{3}\right)=\frac{1}{6}\left(q_{i}\left(l_{1}\right) q_{j}\left(l_{2}\right) q_{k}\left(l_{3}\right)+5(\text { permutations })\right)
\end{gathered}
$$

Now:
q = Harmonic transform of SMHW for wavelet estimators $\mathrm{q}=$ Top hat functions for binned estimators
$\mathrm{q}=$ Continuous functions for Modal estimators (eg polynomials, trigonometric functions...)

RECONSTRUCTION

We have $\langle\beta\rangle=\alpha$ so can reconstruct the best fit bispectrum to the data by using the β as our α. If we have constructed a primordial basis as well then we can use Γ to find the best fit primordial bispectrum

RECONSTRUCTION

We can perform a blind search for excess variance

$$
F_{N L}^{2}(N)=\sum_{n, n^{\prime}=0}^{N} \beta_{n} \zeta_{n, n^{\prime}}^{-1} \beta_{n^{\prime}}
$$

$$
\begin{aligned}
\left\langle F_{N L}^{2}\right\rangle & =N \quad(\text { Gaussian }) \\
\delta F_{N L}^{2} & =\sqrt{2 N}(\text { Gaussian })
\end{aligned}
$$

CONTAMINANTS

As we expect the covariance matrix to be the identity we can use principle component analysis to identify the shape of contaminants.

We first calculate the covariance matrix for beta from simulations

$$
V \zeta V^{T}=D
$$

And then find the rotation which diagonalises
it. This is equivalent to performing an eigen decomposition. The result is that you obtain a new orthonormal basis but now your modes are uncorrelated and ordered from greatest to least variance.

CONTAMINANTS

WMAP inhomogeneous noise

CONTAMINANTS

WMAP Mask

CONTAMINANTS

Point sources

