# The halo bispectrum in N-body simulations with non-Gaussian initial conditions 

Critical Tests of Inflation Using Non-Gaussianity
@ MPA, Munich - November 7th, 2012

## Emiliano SEFUSATTI - ICTP

in collaboration with Martin Crocce, Vincent Desjacques (ArXiv:1003.0007, ArXiv: 1111.6966)

+ Dani Figueroa, Toni Riotto \& Filippo Vernizzi (ArXiv: 1205.2015)


## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales


## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales


## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

If $B_{0}$ was the only effect of NG initial conditions on the LSS then future, large volume surveys ( $\sim 100 \mathrm{Gpc}^{3}$ ) could provide:

$$
\Delta f_{\mathrm{NL}}{ }^{\text {local }}<5 \text { and } \Delta f_{\mathrm{NL}^{\mathrm{eq}}}<10
$$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
\begin{aligned}
& B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots \\
& P=P_{0}+P_{G}^{l o o p}\left[P_{0}\right]+P_{N G}^{l o o p}\left[P_{0}, B_{0}\right] \\
& B=B_{0}+B_{G}^{\text {tree }}\left[P_{0}\right]+B_{G}^{\text {loop }}\left[P_{0}\right]+B_{N G}^{l o o p}\left[P_{0}, B_{0}\right] \\
& \text { primordial component } \\
& \text { (large scales) } \\
& \text { effect on nonlinear } \\
& \text { evolution (small scales) }
\end{aligned}
$$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} \underset{\downarrow}{P}\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots, \quad \text { bias corrections }
$$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots, \quad \text { bias corrections }
$$

$\Delta b_{1, N G}\left(f_{N L}, \vec{k}\right)=\Delta b_{1, s i}\left(f_{N L}\right)+\Delta b_{1, s d}\left(f_{N L}, b_{1, G}, \vec{k}\right)$
$\Delta b_{2, N G}\left(f_{N L}, \vec{k}_{1}, \vec{k}_{2}\right)=\Delta b_{2, s i}\left(f_{N L}\right)+\Delta b_{2, s d}\left(f_{N L}, b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$

## The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

primordial component (large scales)
$\Delta b_{1, N G}\left(f_{N L}, \vec{k}\right)=\Delta b_{1, s i}\left(f_{N L}\right)+\Delta b_{1, s d}\left(f_{N L}, b_{1, G}, \vec{k}\right)$
$\Delta b_{2, N G}\left(f_{N L}, \vec{k}_{1}, \vec{k}_{2}\right)=\Delta b_{2, s i}\left(f_{N L}\right)+\Delta b_{2, s d}\left(f_{N L}, b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$

$$
\Delta b_{2, s d, b}\left(k_{1}, k_{2}, f_{N L}\right)=2 f_{N L} \delta_{c}\left[b_{2, G}+\left(\frac{13}{21}-\frac{1}{\delta_{c}}\right)\left(b_{1, G}-1\right)\right]\left[\frac{1}{M\left(k_{1}, z\right)}+\frac{1}{M\left(k_{2}, z\right)}\right]
$$

We test this model in N -body simulations with local NG initial conditions

$$
\begin{aligned}
& \left\langle\delta \delta \delta_{h}\right\rangle=\delta_{D}\left(\vec{k}_{123}\right) B_{m m h} \\
& \left\langle\delta_{h} \delta_{h} \delta_{h}\right\rangle=\delta_{D}\left(\vec{k}_{123}\right) B_{h}
\end{aligned}
$$

## The Halo Bispectrum: theory vs. simulations


$B_{m m h}=b_{1} B+b_{2} P P+$ perm.
$b_{1}=b_{1, G}+\Delta b_{1, s i}+\Delta b_{1, s d}\left(b_{1, G}, \vec{k}\right)$
$b_{2}=b_{2, G}+\Delta b_{2, s i}+\Delta b_{2, s d}\left(b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$
$\longrightarrow b_{1} \quad$ We fit for $b_{1, G}, b_{2, \mathrm{G}}, \Delta b_{1, \text { si }}$ and $\Delta b_{2, \text { si }}$ all triangular configurations up to $\mathrm{k}=0.07 \mathrm{~h} / \mathrm{Mpc}$



## The Halo Bispectrum: theory vs. simulations

## Matter-matter-halo bispectrum:

$$
B_{m m h}\left(k_{1}, k_{2} ; k_{3}\right)=b_{1}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right)+b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of $\theta$ with $k_{1}=0.05 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.07 \mathrm{~h} / \mathrm{Mpc}$

$$
M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}
$$



## The Halo Bispectrum: theory vs. simulations

## Matter-matter-halo bispectrum:

$$
B_{m m h}\left(k_{1}, k_{2} ; k_{3}\right)=b_{1}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right)+b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of $\theta$ with $k_{1}=0.07 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.08 \mathrm{~h} / \mathrm{Mpc}$

$$
M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}
$$





## The Halo Bispectrum: theory vs. simulations

Halo bispectrum:

$$
\begin{aligned}
B_{h}\left(k_{1}, k_{2}, k_{3}\right)= & b_{1}^{3}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
& +b_{1}\left(f_{N L}, k_{1}\right) b_{1}\left(f_{N L}, k_{2}\right) b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)+c y c .
\end{aligned}
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of $\theta$ with $k_{1}=0.05 \mathrm{~h} / \mathrm{Mpc}, k_{2}=0.07 \mathrm{~h} / \mathrm{Mpc}$


[^0]

## The Halo Bispectrum: theory vs. simulations

Halo bispectrum:

$$
\begin{aligned}
B_{h}\left(k_{1}, k_{2}, k_{3}\right)= & b_{1}^{3}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
& +b_{1}\left(f_{N L}, k_{1}\right) b_{1}\left(f_{N L}, k_{2}\right) b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)+c y c .
\end{aligned}
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of $\theta$ with $k_{1}=0.07 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.08 \mathrm{~h} / \mathrm{Mpc}$ $M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}$


[^1]

## The Halo Bispectrum: theory vs. simulations

$\mathrm{X}^{2}$, for all triangles, as a function of $k_{\text {max }}$



## The Halo Bispectrum: theory vs. simulations

Gaussian halo bias
Best-fit bias parameters and their peak-background split predictions



Non-Gaussian, scale-independent, halo bias corrections


## Halo Power Spectrum vs. Halo Bispectrum



Cumulative signal-to-noise for the effect of NG initial conditions on matter and galaxy correlators ( $\mathrm{P} \& B$ )

Sum of all configurations up to $k_{\max }$

$$
\left(\frac{S}{N}\right)_{P}^{2}=\sum_{k}^{k_{\max }} \frac{\left(P_{N G}-P_{G}\right)^{2}}{\Delta P^{2}} \quad\left(\frac{S}{N}\right)_{B}^{2}=\sum_{k_{1}, k_{2}, k_{3}}^{k_{\max }} \frac{\left(B_{N G}-B_{G}\right)^{2}}{\Delta B^{2}}
$$

The cumulative NG effect is comparable at mildly nonlinear scales

## Halo Power Spectrum vs. Halo Bispectrum



What is the signal in squeezed configurations?

## Halo Power Spectrum vs. Halo Bispectrum



What is the signal in squeezed configurations?


The uncertainty on $f_{N L}$ (local) from Power Spectrum \& Bispectrum (\& both)



The uncertainty on $f_{\mathrm{NL}}$ (local) from Power Spectrum \& Bispectrum (\& both)



The uncertainty on $f_{N L}$ (local) from Power Spectrum \& Bispectrum (\& both)


## The matter bispectrum at small scales

## Matter Power Spectrum

In Perturbation Theory ...


## matter power spectrum

## Matter Power Spectrum

In Perturbation Theory ...


## matter power spectrum

Additional gravity-induced contributions present only for NG initial conditions ( $B_{0}$ )

Few percent effect at small scales for allowed values of $f^{\mathrm{N} L}$

In the Halo Model:
$P(k)=P^{1 h}(k)+P^{2 h}(k), \quad$ where
$P^{1 h}(k)=\int \mathrm{d} m n(m)\left(\frac{m}{\bar{\rho}}\right)^{2}|u(k \mid m)|^{2}$
$P^{2 h}(k)=\int \mathrm{d} m_{1} n\left(m_{1}\right)\left(\frac{m_{1}}{\bar{\rho}}\right) u\left(k \mid m_{1}\right) \int \mathrm{d} m_{2} n\left(m_{2}\right)\left(\frac{m_{2}}{\bar{\rho}}\right) u\left(k \mid m_{2}\right) P_{h h}\left(k \mid m_{1}, m_{2}\right)$
$\mathrm{k}[\mathrm{Mpc} / \mathrm{h}]$

## The matter bispectrum and PNG: small scales

In Perturbation Theory ...


## The matter bispectrum and PNG: small scales



Primordial Gravity-induced component
contributions

Additional gravity-induced contributions present for NG initial conditions ( $B_{0}$ )

## Squeezed configurations $B(\Delta k, k, k)$ as a function of $k$ with $\Delta k=0.01 \mathrm{~h} / \mathrm{Mpc}$

```
ES (2009)
ES, Crocce & Desjacques (2010)
```




## The matter bispectrum and PNG: even smaller scales

## Beyond PT: The Halo Model

There is a significant effect of NG initial conditions of about $5-15 \%$ on all triangles, at small scales and at late times for $f_{N L}=100$

Squeezed configurations $B(\Delta k, k, k)$ as a function of $k$ with $\Delta k=0.0 \mathrm{I} h / \mathrm{Mpc}$



## The matter bispectrum and PNG: even smaller scales

## Beyond PT: The Halo Model

Squeezed configurations $B(\Delta k, k, k)$ as a function of $k$ with $\Delta k=0.0 \mathrm{l} h / \mathrm{Mpc}$



## The matter bispectrum and PNG: even smaller scales

## Beyond PT: The Halo Model


$f_{N L}=0$

## $f_{N L}=0$

galaxies


ES \& Scoccimarro (2005)
weak lensing


## Conclusions

- We do have a good understanding of the multiple effects of PNG on the galaxy bispectrum at large scales (with room for improvement!)
- The impact of NG on nonlinear evolution of structure is significant, particularly in terms of the matter bispectrum: can this be detected in weak lensing surveys?
- A complete analysis of the large-scale structure (e.g. galaxy power spectrum and bispectrum) can do better than power spectrum alone: smaller uncertainties on NG parameters for virtually any model of nonGaussianity


## Galaxy bias and the galaxy power spectrum

Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent correction for NG initial conditions of the local type

$$
\begin{aligned}
& P_{g}(k)=\left[b_{1}+\Delta b_{1}\left(f_{N L}, k\right)\right]^{2} P(k) \\
& \text { "Gaussian" Scale-dependent correction } \\
& \text { bias due to local non-Gaussianity } \\
& \Delta b_{1, N G}\left(f_{N L}, k\right)=\frac{2 f_{N L}\left(b_{1}-1\right) \delta_{c}}{M(k)} \\
& M(k)=\frac{2}{3} \frac{D(z) T(k)}{\Omega_{m} H_{0}^{2}} k^{2}
\end{aligned}
$$

## Galaxy bias and the galaxy power spectrum

The bias of galaxies receives a scale-dependent correction for NG initial conditions of any type

$$
P_{g}(k)=\underset{\substack{\text { "Gaussian" } \\ \text { bias }}}{\left[b_{1}+\Delta b_{1}\left(f_{N L}, k\right)\right]^{2} P(k)}
$$

$$
\begin{aligned}
& \Delta b_{1, N G}\left(f_{N L}, k\right)=\frac{\left(b_{1}-1\right) \delta_{c}}{2 M(k)} I(k, m)+\frac{1}{M(k, z)} \frac{\partial I(k, m)}{\partial \ln \sigma_{m}^{2}} \\
& M(k)=\frac{2}{3} \frac{D(z) T(k)}{\Omega_{m} H_{0}^{2}} k^{2} \\
& I(k, m) \sim \int d^{3} q[\ldots] B_{\Phi}(k, q,|\vec{k}-\vec{q}|) \rightarrow \text { Initial bispectrum }
\end{aligned}
$$

## Matter correlators with non-Gaussian initial conditions



Cumulative signal-to-noise for the effect of NG initial conditions

Sum of all configurations up to $k_{\text {max }}$

$$
\begin{aligned}
& \left(\frac{S}{N}\right)_{P}^{2}=\sum_{k}^{k_{\max }} \frac{\left(P_{N G}-P_{G}\right)^{2}}{\Delta P^{2}} \\
& \left(\frac{S}{N}\right)_{B}^{2}=\sum_{k_{1}, k_{2}, k_{3}}^{k_{\max }} \frac{\left(B_{N G}-B_{G}\right)^{2}}{\Delta B^{2}}
\end{aligned}
$$

- Both the direct contribution of $B_{0}$ and its effect on the nonlinear corrections are important
- The effect of PNG on the matter bispectrum is more significant than on the power spectrum

[^2]
## The matter bispectrum and PNG: small scales



Primordial Gravity-induced
component contributions

Additional gravity-induced contributions present for NG initial conditions ( $B_{0}$ )
Generic configurations $B\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \theta\right)$
as a function of $\theta$
with $\mathrm{k}_{1}=0.1 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=1.5 \mathrm{k}_{1}$


```
ES (2009)
    ES, Crocce & Desjacques (2010)
```




## The matter bispectrum and PNG: even smaller scales

## Beyond PT: The Halo Model

$$
B\left(k_{1}, k_{2}, k_{3}\right)=B_{3 h}\left(k_{1}, k_{2}, k_{3}\right)+B_{2 h}\left(k_{1}, k_{2}, k_{3}\right)+B_{1 h}\left(k_{1}, k_{2}, k_{3}\right),
$$

$$
\begin{aligned}
B_{3 h}\left(k_{1}, k_{2}, k_{3}, z\right)= & \frac{1}{\bar{\rho}^{3}}\left[\prod_{i=1}^{3} \int d m_{i} n\left(m_{i}, z\right) \hat{\rho}\left(m_{i}, z, k_{i}\right)\right] B_{h}\left(k_{1}, m_{1} ; k_{2}, m_{2} ; k_{3}, m_{3} ; z\right), \\
B_{2 h}\left(k_{1}, k_{2}, k_{3}, z\right)= & \frac{1}{\bar{\rho}^{3}} \int d m n(m, z) \hat{\rho}\left(m, z, k_{1}\right) \int d m^{\prime} n\left(m^{\prime}, z\right) \hat{\rho}\left(m^{\prime}, z, k_{2}\right) \hat{\rho}\left(m^{\prime}, z, k_{3}\right) \\
& \times P_{h}\left(k_{1}, m, m^{\prime}, z\right)+\text { cyc. }, \\
B_{1 h}\left(k_{1}, k_{2}, k_{3}, z\right)= & \frac{1}{\bar{\rho}^{3}} \int d m n(m, z) \hat{\rho}\left(k_{1}, m, z\right) \hat{\rho}\left(k_{2}, m, z\right) \hat{\rho}\left(k_{3}, m, z\right) . \\
B_{h}\left(k_{1}, m_{1} ; k_{2}, m_{2} ; k_{3}, m_{3} ; z\right)= & b_{1}\left(m_{1}\right) b_{1}\left(m_{2}\right) b_{1}\left(m_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
& +\left[b_{1}\left(m_{1}\right) b_{1}\left(m_{2}\right) b_{2}\left(m_{3}\right) P\left(k_{1}\right) P\left(k_{2}\right)+\text { cyc. }\right]
\end{aligned}
$$

## Galaxy bias and the galaxy power spectrum

Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent correction for NG initial conditions of the local type

```
Pg}(k)=[\mp@subsup{b}{1}{}+\Delta\mp@subsup{b}{1}{}(\mp@subsup{f}{NL}{},k)\mp@subsup{]}{}{2}P(k
    "Gaussian" Scale-dependent correction
    bias due to local non-Gaussianity
```

QSOs+LRGs: $-\mathbf{3 1}<\mathrm{f}_{\mathrm{NL}}<70$ (95\% CL)
[Slosar et al. (2008)]
AGNs+QSOs+LRGs: $8<\mathrm{f}_{\mathrm{NL}}<88$ (95\% CL)
[Xia et al. (2011)]
high-redshift sources: quasars \& AGNs

CMB limits (95\% CL): -10<for $\mathrm{f}_{\mathrm{NL}}<74$

Limits from LSS are already competitive with the CMB!
(at least for the local model ...)

```
From EUCLID we expect:
    \DeltafNL~5
from the 3D power spectrum alone
or better with multitracers
[e.g. Giannantonio et al. (2011), Seljak (2009)
Hamaus et al. (2011)]
```


[^0]:    ES, Crocce \& Desjacques (2011)

[^1]:    ES, Crocce \& Desjacques (2011)

[^2]:    ES, Crocce \& Desjacques (2011)

