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If B0 was the only effect of NG initial conditions on the LSS 
then future, large volume surveys (~100 Gpc3) could provide:

ΔfNLlocal < 5 and  ΔfNLeq < 10

Scoccimarro, ES & Zaldarriaga (2004), ES & Komatsu (2007)
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∆b1,NG(fNL,�k) = ∆b1,si(fNL) +∆b1,sd(fNL, b1,G,�k)

∆b2,NG(fNL,�k1,�k2) = ∆b2,si(fNL) +∆b2,sd(fNL, b1,G, b2,G,�k1,�k2)
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with

∆b1,si(fNL) = ∆b10,NG , (36)

∆b1,sd(k, fNL) =
2 fNL δc (b1,G − 1)

M(k, z)
. (37)

(38)

The quadratic bias function b2(k1,k2, fNL) is given instead by

b2(k1,k2, fNL) = b2,G +∆b2,NG(k1,k2, fNL) , (39)

where b2,G = b20,G is the constant, quadratic bias for Gaussian initial conditions while the non-Gaussian correction
is given this time by three contributions, with distinct dependencies on the two wavenumbers,

∆b2,NG(k1,k2, fNL) ≡ ∆b2,si(fNL) +∆b2,sd,a(k1,k2, fNL) +∆b2,sd,b(k1, k2, fNL) (40)

with

∆b2,si(fNL) = ∆b20,NG , (41)

∆b2,sd,a(k1,k2, fNL) = −68

21
fNLδc

b1,G − 1

M(k12, z)
, (42)

∆b2,sd,b(k1, k2, fNL) = 2 fNL δc

�
b2,G +

�
13

21
− 1

δc

�
(b1,G − 1)

� �
1

M(k1, z)
+

1

M(k2, z)

�
. (43)

III. THE MODEL

We will not consider any loop-correction coming from the bias expansion.

A. The halo and matter-halo power spectra

Form the bias relation eq. (31), the leading order contribution to the halo-matter cross-power spectrum is simply
given by

Pmh(k) = b1(k, fNL)Pm(k) . (44)

For Gaussian initial conditions this reduces to Ph,G(k) = b1,G Pm,G(k) while the non-Gaussian correction is given by

∆Pmh,NG(k) = b1,G ∆Pm,NG(k) + [∆b1,si +∆b1,sd(k)]Pm,G +O(f2
NL) . (45)

For the halo power spectrum we have instead

Ph(k) = b21(k, fNL)Pm(k) , (46)

with the non-Gaussian correction given by

∆Ph,NG(k) = b21,G ∆Pm,NG(k) + 2 b1,G [∆b1,si +∆b1,sd(k)]Pm,G +O(f2
NL) . (47)

B. The halo and matter-matter-halo bispectra

The cross matter-matter-halo bispectrum Bmmh is defined as

�δ(k1)δ(k2)δh(k3)� ≡ δD(k123)Bmmh(k1, k2; k3) , (48)

where we assume the third component k3 to correspond to the halo density contrast. The expression for the matter-
matter-halo cross-bispectrum at leading order is given by

Bmmh(k1, k2; k3) = b1(k3, fNL)Bm(k1, k2, k3) + b2(k1,k2, fNL)Pm(k1)Pm(k2) , (49)
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We test this model in N-body simulations with 
local NG initial conditions

�δδδh� = δD(�k123)Bmmh

�δhδhδh� = δD(�k123)Bh
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Matter-halo power spectrum, Pδh(k)
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FIG. 3: Cross matter-halo power spectrum, Pδh(k). See text for explanation.
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Generic configurations (I), Bδδh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 7: Generic configurations (I) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.07hMpc−1, k2 =
0.08hMpc−1. See text for explanation.
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The Halo Bispectrum: theory vs. simulations

We fit for b1,G, b2,G, Δb1,si and Δb2,si         

all triangular configurations 
up to k = 0.07 h/Mpc

Bmmh = b1 B + b2 P P + perm.

b1 = b1,G +∆b1,si +∆b1,sd(b1,G,�k)

b2 = b2,G +∆b2,si +∆b2,sd(b1,G, b2,G,�k1,�k2)
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Generic configurations (II), Bδδh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 8: Generic configurations (II) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.05hMpc−1, k2 =
0.07hMpc−1. See text for explanation.

Matter-matter-halo bispectrum: 

Bmmh(k1, k2; k3) = b1(fNL, k)B(k1, k2, k3) + b2(fNL, k1, k2)P (k1)P (k2)

21

Generic configurations (II), Bδδh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 8: Generic configurations (II) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.05hMpc−1, k2 =
0.07hMpc−1. See text for explanation.

B(k1, k2, θ) as a function of θ with k1 = 0.05 h/Mpc, k2 =0.07 h/Mpc

ES, Crocce & Desjacques (2011)
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7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).
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Generic configurations (I), Bδδh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 7: Generic configurations (I) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.07hMpc−1, k2 =
0.08hMpc−1. See text for explanation.
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Generic configurations (I), Bδδh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 7: Generic configurations (I) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.07hMpc−1, k2 =
0.08hMpc−1. See text for explanation.

Matter-matter-halo bispectrum: 

Bmmh(k1, k2; k3) = b1(fNL, k)B(k1, k2, k3) + b2(fNL, k1, k2)P (k1)P (k2)

B(k1, k2, θ) as a function of θ with k1 = 0.07 h/Mpc, k2 =0.08 h/Mpc

The Halo Bispectrum: theory vs. simulations
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The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

ES, Crocce & Desjacques (2011)



Halo bispectrum: 

Bh(k1, k2, k3) = b31(fNL, k)B(k1, k2, k3)

+b1(fNL, k1)b1(fNL, k2)b2(fNL, k1, k2)P (k1)P (k2) + cyc.
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Generic configurations (II), Bh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 12: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.
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Generic configurations (II), Bh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 12: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.

B(k1, k2, θ) as a function of θ with k1 = 0.05 h/Mpc, k2 =0.07 h/Mpc

The Halo Bispectrum: theory vs. simulations
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The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

ES, Crocce & Desjacques (2011)
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Generic configurations (I), Bh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 11: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.
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Generic configurations (I), Bh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 11: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.

Halo bispectrum: 

Bh(k1, k2, k3) = b31(fNL, k)B(k1, k2, k3)

+b1(fNL, k1)b1(fNL, k2)b2(fNL, k1, k2)P (k1)P (k2) + cyc.

B(k1, k2, θ) as a function of θ with k1 = 0.07 h/Mpc, k2 =0.08 h/Mpc
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The EPT expansion for the matter bispectrum is given by
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where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)
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d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

ES, Crocce & Desjacques (2011)



χ2, for all triangles, as a function of kmax

7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

17

Matter-matter-halo bispectrum, Bδδh

0

2

4

6

8

Χ2
�d.o.f

.

Low mass bin
Gaussian ICs, B∆∆h, G

0

2

4

6

8

Χ2
�d.o.f

.

High mass bin
Gaussian ICs, B∆∆h, G

0.05 0.10 0.20
0

2

4

6

8

kmax �hMpc�1�
Χ2
�d.o.f

.

Non�Gaussian effect, �B∆∆h,NG

0.05 0.10 0.20
0

2

4

6

8

kmax �hMpc�1�

Χ2
�d.o.f

.

Non�Gaussian effect, �B∆∆h, NG

Halo bispectrum, Bh

0

2

4

6

8

Χ2
�d.o.f

.

Low mass bin
Gaussian ICs, Bh, G

0

2

4

6

8

Χ2
�d.o.f

.

High mass bin
Gaussian ICs, Bh, G

0.05 0.10 0.20
0

1

2

3

4

5

kmax �hMpc�1�

Χ2
�d.o.f

.

Non�Gaussian effect, �Bh, NG

0.05 0.10 0.20
0

1

2

3

4

5

kmax �hMpc�1�

Χ2
�d.o.f

.

Non�Gaussian effect, �Bh, NG

FIG. 5: Reduced χ2 for the matter-matter-halo bispectrum fits. Thin lines correspond to the tree-level approxi-
mation for matter correlators. Thin and light (cyan and magenta) curves include the ∆b2,sd,b correction.

These configurations are chosen to given a fair assessment of the effects of non-Gaussianity on the halo
bispectrum which, as we will see, is not limited to squeezed configurations.

Figures 6, 7, 8 and 9 show, respectively, the four different subsets of triangles described above for the
matter-matter-halo bispectrum Bδδh(k1, k2; k3). Notice that the third variable k3 corresponds to the halo
density δh(k3).

As for the power spectrum plots, for each set of configurations we show the Gaussian component Bδδh,G

and the model residuals (upper two rows), the non-Gaussian correction ∆Bδδh,NG and the corresponding
model residuals (third and fourth row), the non-Gaussian to Gaussian ratio Bδδh,NG/Bδδh,G (fifth row)
and the O(f2

NL) component determined from the mean of the [Bδδh,NG(fNL = +100) +Bδδh,NG(fNL =

The Halo Bispectrum: theory vs. simulations
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FIG. 14: Best-fit bias parameters versus theoretical predictions. In all panels the continuous curve shows the
predictions assuming a Sheth-Tormen mass function with the original parameters and the non-Gaussian correc-
tion to the mass function with the form proposed by [60] while the dotted line assumes instead the mass function
measured from the simulations. The circles correspond to the best-fit bias parameters where the Gaussian linear
bias b10,G and its non-Gaussian, scale-independent correction ∆b10,NG are determined from power spectrum mea-
surements while only the Gaussian quadratic bias b20,G and its non-Gaussian correction ∆b20,NG are determined
from the bispectrum. The square data points correspond instead to the same bias parameters determined ex-
clusively from bispectrum measurements. Filled symbols are derived from halo correlators, empty symbols from
matter-halo cross-correlators. Data points are plotted at the mean mass value for the corresponding mass bin
and are slightly displaced for clarity when needed. Vertical thin gray lines correspond to the thresholds defining
the two mass bins.

spectrum measurements in simulations with Gaussian initial conditions while its correction ∆b10,NG is
obtained from the extra contribution to the power spectrum induced by non-Gaussianity. The quadratic
parameter b20,G is in turn given by fitting the bispectrum with Gaussian initial conditions and the
correction ∆b20,NG by the non-Gaussian effect on the bispectrum. The whole procedure is performed
independently on the matter-halo cross correlators and on the halo correlators (power spectrum and
bispectrum).

While probably being the most “predictive” procedure not involving the direct evaluation of the bias
parameters, this is by no means the only possible one. We did in fact consider alternative determinations
entirely based on bispectrum measurements. The outcome of such different procedures is shown in Fig. 14,
where it is also compared to the theoretical predictions of the peak-background split approach.

In the upper left panel of Fig. 14 the best-fit values of b10,G are shown, with circles denoting the value
obtained from the power spectrum measurements and squares those obtained from the bispectrum, after
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What is the signal in squeezed configurations?
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The matter bispectrum at small scales
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FIG. 11: Comparison of the matter power spectrum in models with Gaussian and non-Gaussian initial density fluctuations at
redshifts z = 1.0 (left sub-fig.) and z = 0.0 (right sub-fig.). Top panels: Absolute power. Points with error bars show results for
the simulations and the colors green, red and blue denote the models fNL = {0,+100,−100}. The lines represent halo model
predictions: dash lines denote P1H; dot-dash lines denote P2H; dotted lines denote PExc

2H ; the solid line represents the total halo
model prediction including subtraction of the halo exclusion term. Bottom panels: ratio of the matter power spectra in the
fNL = +100 and −100 models with respect to the Gaussian (fNL = 0) results. Points and line styles are as above.

lation code DualTreeTwoPoint, which is based upon the
kD-tree data structure, and the code is parallelized using
MPI calls. Thus on averaging over the 12 simulations we
expect results that are accurate to 5%/

√
12− 1 ! 2%.

Figure 12 presents the ensemble average estimate of
the matter correlation function in the Gaussian models
over three decades in spatial scale at redshifts z = 1.0 and
z = 0.0, left and right panels respectively. The figure also
shows the halo model predictions appear in remarkably
good agreement with the simulation data. The exact
deviations are hard to quantify on the log-scale and so we
take the ratio of the theory and simulation measurements
with respect to the halofit model correlation function.

We now see that the halo model predictions are better
than 10% over the entire range of scales and redshifts con-
sidered. The predictions are somewhat worse at the 2–
to 1–Halo cross-over scale (i.e. r ∈ [2, 10]h−1Mpc), also
on the very largest of scales around the BAO feature and
on the smallest scales r ! 0.2 h−1Mpc. We emphasize
that none of the halo model parameters were tuned to fit
the clustering statistics directly.

In the figure we also show the result for the halo model
calculation if no exclusion correction is made, and we
see that predictions significantly overshoot the measure-
ments by factors of a few on small scales, especially at
low redshift. The figure also shows that the exclusion cor-
rection essentially kills the contribution from the 2-Halo
term to the correlation function on small scales. Further-
more this correction also kills some of the contribution
of the 1-Halo term to the correlation function on scales
larger than r ∼ 2 h−1Mpc.

E. Matter correlation function: PNG case

In Figure 13 we present the ensemble average estimate
of the matter correlation function in the models evolv-
ing from PNG initial conditions at redshifts z = 1.0 and
z = 0.0, left and right panels respectively. As for the
correlation function in the Gaussian case the halo model
predictions with exclusion provide a remarkably good de-
scription of the clustering. The differences are not clearly

Smith, Desjacques & Marian (2010)

Few percent effect at small scales 
for allowed values of fNL 

Ratio of the non-Gaussian 
to the Gaussian power 
spectrum for fNL = ±100 
(local) at z =1

Additional gravity-induced contributions 
present only for NG initial conditions (B0)

matter power spectrum

A. Cooray, R. Sheth / Physics Reports 372 (2002) 1–129 29

spatially exclusive—so each halo is like a small hard sphere); assuming that it scales like !(r)
is a gross overestimate. Using !hh(r|m1; m2) ≈ b(m1)b(m2)!lin(r), i.e., using the linear, rather than
the non-linear correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. Although the results of [258,223] allow one to account for this more
precisely, it turns out that great accuracy is not really needed since, on small scales, the correlation
function is determined almost entirely by the one-halo term anyway. Although almost all work to
date uses this approximation, it is important to bear in mind that it’s form is motivated primarily by
convenience. For example, if volume exclusion e!ects are only important on very small scales, then
setting !(r) ≈ !1-loop(r) rather than !lin(r), i.e., using the one-loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approximation.
Because the model correlation function involves convolutions, it is much easier to work in Fourier

space: the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Thus, we can write the dark matter power spectrum as

P(k) = P1h(k) + P2h(k); where

P1h(k) =
∫

dmn(m)
(

m
#"

)2

|u(k|m)|2

P2h(k) =
∫

dm1n(m1)
(

m1
#"

)

u(k|m1)
∫

dm2n(m2)
(

m2
#"

)

u(k|m2)Phh(k|m1; m2) : (88)

Here, u(k|m) is the Fourier transform of the dark matter distribution within a halo of mass m
(Eq. (80)) and Phh(k|m1; m2) represents the power spectrum of halos of mass m1 and m2. Following
the discussion of the halo–halo correlation function (Eq. (87)), we approximate this by

Phh(k|m1; m2) ≈
2
∏

i=1

bi(mi)Plin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more accurate than Plin(k).

4.2. Higher-order correlations

Expressions for the higher order correlations may be derived similarly. However, they involve
multiple convolutions of halo pro"les. This is why it is much easier to work in Fourier space:
the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-spectra of the halos are

Bhhh(k1; k2; k3;m1; m2; m3) =
3
∏

i=1

bi(mi)
[

Blin(k1; k2; k3) +
b2(m3)
b1(m3)

Plin(k1)Plin(k2)
]

;

Thhhh(k1; k2; k3; k4;m1; m2; m3; m4) =
4
∏

i=1

bi(mi)

[

T lin(k1; k2; k3; k4)

+
b2(m4)
b1(m4)

Plin(k1)Plin(k2)Plin(k3)

]

: (90)

In Perturbation Theory ...

In the Halo Model:
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The matter bispectrum and PNG: small scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

ES (2009)
ES, Crocce & Desjacques (2010) 
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):

0.01 0.02 0.05 0.10 0.20

10000

5000

50000

2000

20000

3000

30000

1500

15000

7000

k �hMpc�1�
B
G

z � 0

N�body
tree�level
one�loop

0.01 0.02 0.05 0.10 0.20

200

500

1000

2000

5000

k �hMpc�1�

B
G

z � 1

0.01 0.02 0.05 0.10 0.20

50

100

200

500

1000

2000

k �hMpc�1�

B
G

z � 2

0.05 0.10 0.15 0.20 0.25 0.30
0.6

0.8

1.0

1.2

1.4

1.6

1.8

k �hMpc�1�

B
G
�B G,t

re
e,
n
w

Ratio BG � BG, tree, nw, z � 0
N�body
tree�level
one�loop
SC01

0.05 0.10 0.15 0.20 0.25 0.30

0.8

1.0

1.2

1.4

1.6

k �hMpc�1�

B
G
�B G,t

re
e,
n
w

Ratio BG � BG, tree, nw, z � 1

0.05 0.10 0.15 0.20 0.25 0.30

0.8

1.0

1.2

1.4

1.6

k �hMpc�1�

B
G
�B G,t

re
e,
n
w

Ratio BG � BG, tree, nw, z � 2

Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.
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The matter bispectrum and PNG: even smaller scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

Beyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 
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Figure 2: Squeezed configurations of the matter bispectrum, B(k1, k, k), with k1 � k2 = k3 ≡ k, at
redshift z = 0 (left panels) and z = 1 (right panels). See text for explanation. [Fil: can we show a bit
more what happens below 1 in the lower plots?]

15

There is a significant  effect of NG initial 
conditions of about 5-15% on all triangles, at 
small scales and at late times for fNL = 100



The matter bispectrum and PNG: even smaller scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/MpcBeyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 
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Figure 3: Non-Gaussian corrections to individual ingredients of the Halo Model for the matter power

spectrum (left panel) and for the squeezed configurations of the matter bispectrum (right panel). In

addition to the full Halo Model (continuous curve) we consider the results of allowing for a non-Gaussian

correction only in each one of the ingredients of the Halo Model: the mass function (short-dashed curve),
the halo density profile (dot-dashed), the linear halo bias (dotted) and, for the bispectrum in particular,

the quadratic halo bias (medium-dashed) and the initial component to the tree-level bispectrum (long-
dashed). The correction to the quadratic bias (upper right panel) is shown with the sign changed. All

panels share the same label.

and Eq. (37), together with Eq. (50), the Halo Model bispectrum contributions become, at leading order

in k1/k � 1,

B1h(k1, k, k) =
1

ρ̄
�[m]
2 (k, fNL) , (51)

B2h(k1, k, k) = �[b1]2 (k, fNL)PL(k1) , (52)

B3h(k1, k, k) = 2

�
13

14
+

�
4

7
− 1

2

d lnPL

d ln k

�
(k̂1 · k̂)2 +

�[b2]1 (k, fNL)

�[b1]1 (k, fNL)
+

2 fNL

M(k1, z)

�
PL(k1)P2h(k) . (53)

with
d lnPL
d ln k evaluated at k. The functions �[F ]

i in these expressions are defined as

�[F ]
i (k, fNL) ≡

1

ρ̄ i

�
dmnNG(m, z, fNL) ρ̂

i
(m, z, k, fNL)F (m, z, fNL) , (54)

where F (m, z, fNL) represents a generic function of mass and redshift. Thus, these functions are like an

“average” of the function F , weighted by the mass function and the ith power of the Fourier transform
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The matter bispectrum and PNG: even smaller scales 

Beyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 

Figure 7: Relative effect of primordial non-Gaussianity shown in terms of the quantity

BNG(k1, k2, k3)/BG(k1, k2, k3) at z = 1 plotted as a function of the ratios k3/k1 and k2/k1 assuming

a constant k1 = 3hMpc
−1

. The function takes values on a triangle (represented by the shaded area on

the bottom surface) where the lower corner corresponds to flattened triangles (k1 = 2k2 = 2k3), to top

right corner to equilateral configurations (k1 = k2 = k3) and the top left corner to squeezed configurations

(k2 � k1 = k3). The left panel shows the ratio BNG/BG computed in the three-level approximation in

PT. The right panel shows instead the full HM calculation.

However, since the ratio BNG/BG agrees very well with the one measured in the numerically simulations,

this inaccuracy is likely to be traced in the Halo Model itself, more than on the inclusion of non-Gaussian

corrections.

In order to provide a more complete description of the impact of primordial non-Gaussianity on all

triangular configurations, in Fig. 7 we show the relative effect BNG(k1, k2, k3)/BG(k1, k2, k3) at z = 1

as a function of the ratios k3/k1 and k2/k1 assuming a constant k1 = 3hMpc
−1

. In order to avoid

redundancy among equivalent configurations, the quantity plotted takes values on a triangle (represented

by the shaded area on the bottom surface) where the lower corner corresponds to flattened triangles

(k1 = 2k2 = 2k3), the top right corner to equilateral configurations (k1 = k2 = k3) and the top left

corner to squeezed configurations (k2 � k1 = k3). The left panel shows the ratio BNG/BG computed in

the tree-level approximation in PT. Even though perturbation theory is not applicable at these scales,

this plot nevertheless provides an estimate of the contribution of the linear bispectrum B0 to the overall

effect. Clearly, a large effect is present only in the squeezed limit. The right panel shows instead the

full HM calculation. In this case we notice how, in addition to a 20% effect in the squeezed limit, all
triangles of essentially any shape receive a correction of the order of about 7-8%. We also notice, as

in the previous plots, a local maximum effect corresponding to wavenumbers of order 1hMpc
−1

and to

flattened configurations.
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 k1 = 3 h/Mpc



 fNL = 0



 fNL = 0

16 I. Kayo, M. Takada & B. Jain

Figure 10. Left panel: Cumulative signal-to-noise ratios (S/N ) for the power spectrum (P ), the bispectrum (B) and the joint measurement (P + B) for a
survey area of 25 deg2 and source redshift zs = 1. It is shown as a function of the maximum multipole lmax, where the power spectrum and/or bispectrum
information are included over lmin ! l ! lmax (see Eqs. 27, 28 and 31). Note that we set lmin = 72 and did not include the shape noise contamination here
– it is shown in the next figure. The circle, triangle and square symbols are the simulation results, computed from the 1000 realizations, for P , B and P + B
measurements, respectively. The short-dashed, long-dashed and solid curves are the halo model predictions. Adding the bispectrum to the power spectrum
does increase the S/N amplitude, e.g. by about 50% at lmax ! 103 . For comparison, the thin dotted curve shows the S/N for the power spectrum for
the Gaussian field, which the primordial density field should have contained. Right panel: The thinner curves are added to the left panel to show the model
predictions without the HSV contribution. For l > 1000, the HSV contribution lowers the S/N significantly.

the non-Gaussian errors, the total S/N is not simply a sum of the S/N ’s of the power spectra and the bispectra due to the cross-covariance,
because the two spectra are not independent. To study this, we first define the data vector for the joint measurement as

D =
{

P1, P2, · · · , Pnb
, B1, B2, · · · , Bitriang,max

}

. (29)

The covariance matrix for the data vectorD is given as

C
P+B =

(

CP CPB

CPB CB

)

, (30)

where theCPB is the cross-covariance between the power spectrum and the bispectrum. Then, the total S/N for the combined measurement
is similarly defined as
(

S
N

)2

P+B
=

∑

i,j!lmax

Di

[

C
P+B

]−1

ij
Dj . (31)

Fig. 10 shows the expected S/N ’s for measurements of the power spectra and the bispectra for a survey area of 25 square degrees (i.e.
the area of the ray-tracing simulation), as a function of the maximum multipole lmax up to which the power spectrum and/or bispectrum
information are included. Note that the minimum multipole is fixed to lmin = 72, and we did not include the shot noise contamination to the
error covariance matrices, so the results solely correspond to the cosmological information contents. The circle, triangle and square symbols
are the simulation results for the S/N ’s of the power spectra, the bispectra and the joint measurements, respectively, which are computed
using the 1000 realizations. The thick short-dashed, long-dashed and solid curves are the halo model predictions. First of all, the lensing
bispectra add a new information content to the power spectrum measurement. To be more quantitative, adding the bispectrum measurement
increases the S/N values by about 50% for lmax ! 103 compared to the power spectrum measurement alone, where lmax ! 103 or a few
103 are the target maximum multipoles for the upcoming weak lens surveys. This improvement is equivalent to about 2.3 larger survey area
for the power spectrum measurement alone; that is, the same data sets can be used to obtain the additional information, if the bispectrum
measurement is combined with the power spectrum measurement. Secondly, the halo model predictions are in nice agreement with the
simulation results. Note that the total S/N for the joint measurement (P + B) is close to the linear sum of the S/N values ((S/N)P
and (S/N)B), not the sum of their squared values (S/N)2, due to the significant cross-covariance between P and B (see Appendix C
in Takada & Bridle 2007, for the similar discussion). If ignoring the cross-covariance, adding the bispectrum measurement does not much

c© 0000 RAS, MNRAS 000, 000–000
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Information beyond the two-point function: how much?

Comparing the cumulative signal-to-noise:

[ES & Scoccimarro (2005)]

In the case of SDSS ...

There is as much signal-to-noise
in the bispectrum
as in the power spectrum
at mildly non-linear scales!

... even when the survey geometry and
full, non-linear covariance are taken into
account!

Emiliano Sefusatti Nonlinearities & Non-Gaussianities in the Large-Scale Structure

ES & Scoccimarro (2005) 
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Conclusions

• We do have a good understanding of the multiple effects of PNG on the 
galaxy bispectrum at large scales  (with room for improvement!)

• The impact of NG on nonlinear evolution of structure is significant, 
particularly in terms of the matter bispectrum: can this be detected in 
weak lensing surveys?

• A complete analysis of the large-scale structure (e.g. galaxy power 
spectrum and bispectrum) can do better than power spectrum alone: 
smaller uncertainties on NG parameters for virtually any model of non-
Gaussianity 



Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent 
correction for NG initial conditions of the local type

“Gaussian” 
bias

Scale-dependent correction 
due to local non-Gaussianity

Pg(k) = [b1 +∆b1(fNL, k)]
2 P (k)

Galaxy bias and the galaxy power spectrum

∆b1,NG(fNL, k) =
2fNL(b1 − 1)δc

M(k)

M(k) =
2

3

D(z)T (k)

ΩmH
2
0

k
2



The bias of galaxies receives a scale-dependent 
correction for NG initial conditions of any type

“Gaussian” 
bias

Scale-dependent correction

Pg(k) = [b1 +∆b1(fNL, k)]
2 P (k)

∆b1,NG(fNL, k) =
(b1 − 1)δc
2M(k)

I(k,m) +
1

M(k, z)

∂I(k,m)

∂ lnσ2
m

Galaxy bias and the galaxy power spectrum

M(k) =
2

3

D(z)T (k)

ΩmH
2
0

k
2

I(k,m) ∼
�

d3q[...]BΦ(k, q, |�k − �q|) Initial bispectrum

Matarrese & Verde (2008)
Desjacques, Schmidt & Jeong (2011)
Scoccimarro et al. (2011)



Matter correlators with non-Gaussian initial conditions

�
S

N

�2

P

=
kmax�

k

(PNG − PG)
2

∆P 2

�
S

N

�2

B

=
kmax�

k1,k2,k3

(BNG −BG)
2

∆B2

Cumulative signal-to-noise for the 
effect of NG initial conditions

Sum of all configurations
up to kmax

• Both the direct 
contribution of B0 and its 
effect on the nonlinear 
corrections are important
• The effect of PNG on the 

matter bispectrum is more 
significant than on the 
power spectrum
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FIG. 1: Left panel: Cumulative signal-to-noise for the effect of non-Gaussian initial conditions on the matter
power spectrum and bispectrum as defined in Eq. (48) and Eq. (49) as a function of the largest wavenumber
included (kmax). Continuous and dashed curves indicate the signal-to-noise for the matter bispectrum and power
spectrum, respectively, when the correlators and their variance are determined from the simulations. The dotted
line correspond to the tree-level prediction for the matter bispectrum in Eulerian PT. Right panel: Cumulative
signal-to-noise for the matter bispectrum with the sum in Eq. (48) restricted to triangles with k3 < 0.03hMpc−1

(dotted curve), k3 < 0.05hMpc−1 (dot-dashed curve) and k3 < 0.1hMpc−1 (dashed curve) compared to the case
where all triangles are included (continuous curve).

affect the comparison between the two correlators at large and mildly non-linear scales (see, for instance,

[46] for a realistic estimate of the effects of covariance on the galaxy bispectrum).

In the left panel of Fig. 1 we show the cumulative signal-to-noise for the matter power spectrum (dashed
curve) and bispectrum (continuous curve) as measured from the simulations. The dotted curve represents

the predicted signal-to-noise for the matter bispectrum assuming the correction induced by non-Gaussian

initial conditions is given by the linearly evolved initial bispectrum B0 and the bispectrum variance is

given by its leading Gaussian component [43, 57]

Var[B(k1, k2, k3)] =
sB

8π2k1k2k3
P (k1)P (k2)P (k3) , (50)

with sB = 6, 2 or 1 for equilateral, isosceles or scalene triangles respectively. The theoretical prediction

agrees reasonably well with the measured signal at large scales. On the other hand, the excess in the

measured cumulative signal-to-noise at small scales, which are affected as well by a larger variance, is due

to the impact of non-Gaussian initial conditions on the nonlinear evolution of the matter bispectrum.

Most importantly, Fig. 1 clearly shows that the effect of PNG in the matter bispectrum is larger by

roughly a factor of 4 than in the matter power spectrum, where PNG only enters at the nonlinear

level. This is true nonlinear and mildly nonlinear scales, and it is possible that this behavior extends

to smaller scales as well [58]. In the right panel of Fig. 1, we show the cumulative signal-to-noise for

the matter bispectrum restricted to different classes of triangular configurations. Specifically, the sum

in Eq. (49) runs over triangles with k3 < 0.03hMpc
−1

(dotted curve), k3 < 0.05hMpc
−1

(dot-dashed
curve) and k3 < 0.1hMpc

−1
(dashed curve). The dotted curve, for instance, corresponds to mostly

squeezed triangles, with one mode (corresponding to k3) deeply in the linear regime and the two others

(for which k1, k2 ≥ k3) gradually probing nonlinear scales as kmax increases. We see that, despite the

fact that squeezed configurations provide a significant contribution to the signal-to-noise as is expected

for local non-Gaussianity, the signal is fairly equally distributed over all configurations. For instance, for

kmax = 0.2hMpc
−1

, triangles with k3 < 0.03hMpc
−1

account for one-third of the total signal solely.

This picture changes substantially when we consider halo correlation functions. For the halo power

spectrum, the scale-dependent correction to halo bias dominates the signal at large scales. In Fig. 2 we

show the cumulative signal-to-noise defined in Eq.s (48) and (49) as estimated from measurements of the

ES, Crocce & Desjacques (2011) 



The matter bispectrum and PNG: small scales 

B = B0 +Btree
G [P0] +Bloop

G [P0] +Bloop
NG [P0, B0]

Primordial 
component

Gravity-induced 
contributions

Additional gravity-induced contributions 
present for NG initial conditions (B0)
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B(k1, k2, θ) vs. θ with k1 � 0.1 h Mpc−1 and k2 = 1.5k1, Gaussian initial conditions (fNL = 0):
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B(k1, k2, θ) vs. θ with k1 � 0.1 h Mpc−1 and k2 = 1.5k1, non-Gaussian initial conditions (fNL = 100):
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FIG. 6: Same as Fig. 3 but for generic configurations B(k1, k2, θ) with k1 = 0.094 h Mpc−1 and k2 = 1.5k1 as a function of
the angle θ between k1 and k2. Notice that the first row now shows the reduced bispectrum Q(k1, k2, k3), eq. (34), rather than
B(k1, k2, k3).
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B(k1, k2, θ) vs. θ with k1 � 0.1 h Mpc−1 and k2 = 1.5k1, Gaussian initial conditions (fNL = 0):
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B(k1, k2, θ) vs. θ with k1 � 0.1 h Mpc−1 and k2 = 1.5k1, non-Gaussian initial conditions (fNL = 100):
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FIG. 6: Same as Fig. 3 but for generic configurations B(k1, k2, θ) with k1 = 0.094 h Mpc−1 and k2 = 1.5k1 as a function of
the angle θ between k1 and k2. Notice that the first row now shows the reduced bispectrum Q(k1, k2, k3), eq. (34), rather than
B(k1, k2, k3).
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Generic configurations B(k1, k2, θ) 
as a function of θ 
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The matter bispectrum and PNG: even smaller scales 

Beyond PT:  The Halo Model

halos to be tracers of the underlying matter distribution, we can assume a linear bias relation between the

halo and the matter density constrasts, so that δh ≈ b1δ. Thus, at large scales, the halo power spectrum

can be approximated as

Ph(k,m1,m2) = b1(m1) b1(m2)PL(k) , (12)

where b1(m) represents the linear bias function for halos of mass m. Note that for Gaussian initial

conditions, b1 only depends on the mass m, as implicitely assumed in Eq. (12). However, if primordial

non-Gaussianity is considered, b1 will also depend in general on the scale k. Either way, the 2-halo term

can be rewritten as

P2h(k, z) =
1

ρ̄2

�
2�

i=1

�
dmi n(mi, z) ρ̂(k,m, z) b1(m, z)

�
PL(k) , (13)

with an additional dependence on k in the b1 function for non-Gaussian initial conditions.

This description can be easily extended to the matter bispectrum. In the case of a three-point

function, we should account for the possibility that the three points belong to just one, two or three dark

matter halos. This means that there are now three distinct contributions to the Halo Model expression

for the matter bispectrum, that is

B(k1, k2, k3) = B3h(k1, k2, k3) +B2h(k1, k2, k3) +B1h(k1, k2, k3) , (14)

where

B3h(k1, k2, k3, z) =
1

ρ̄3

�
3�

i=1

�
dmi n(mi, z) ρ̂(mi, z, ki)

�
Bh(k1,m1; k2,m2; k3,m3; z) , (15)

B2h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(m, z, k1)

�
dm� n(m�, z) ρ̂(m�, z, k2) ρ̂(m

�, z, k3)

×Ph(k1,m,m�, z) + cyc. , (16)

B1h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(k1,m, z) ρ̂(k2,m, z) ρ̂(k3,m, z) . (17)

In this case, while the 2-halo term depends on the halo power spectrum as in the previous case, the 3-halo
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Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent 
correction for NG initial conditions of the local type

“Gaussian” 
bias

Scale-dependent correction 
due to local non-Gaussianity

CMB limits (95% CL): -10 < fNL < 74
[Komatsu et al. (2009)]

QSOs+LRGs: -31 < fNL < 70   (95% CL)
[Slosar et al. (2008)]

AGNs+QSOs+LRGs: 8 < fNL < 88  (95% CL)
[Xia et al. (2011)]

Limits from LSS are already 
competitive with the CMB!

(at least for the local model ...)

high-redshift sources: quasars & AGNs

Pg(k) = [b1 +∆b1(fNL, k)]
2 P (k)

Galaxy bias and the galaxy power spectrum

From EUCLID we expect:
    ΔfNL ~ 5
from the 3D power spectrum alone
or better with multitracers 
[e.g. Giannantonio et al. (2011), Seljak (2009) 
Hamaus et al. (2011)]


