The non-Gaussian signal in the galaxy bispectrum

- Donghui Jeong Center for Astrophysical Sciences, Johns Hopkins University
- Critical Test of Inflation Using Non-Gaussianity, MPA, Garching, Germany 7 November 2012

The galaxy bispectrum

 The galaxy bispectrum is the Fourier transform of the three point correlation function

 $\langle \delta_a(k_1) \delta_a(k_2) \delta_a(k_3) \rangle = (2\pi)^3 B_a(k_1, k_2, k_3) \delta^D(k_1 + k_2 + k_3)$

• The galaxy bispectrum depends on triangular configurations.

Signal of the galaxy bispectrum

- In the Gaussian universe, the bispectrum for linear galaxy density field vanishes.
- Therefore, bispectrum signal consists of
 - Non-linear matter clustering
 - Non-linear bias
 - Non-linear redshift space distortion
 - Linearly evolved non-Gaussian matter bispectrum
 - Scale dependent non-Gaussian bias

The local bias assumption $\delta_q(oldsymbol{x}) = \epsilon(oldsymbol{x}) + f(\delta_m(oldsymbol{x}))$ Fry & Gaztanaga 1993 $=\epsilon(\boldsymbol{x})+c_1\delta_m(\boldsymbol{x})+\frac{c_2}{2}\delta_m^2(\boldsymbol{x})+\frac{c_3}{6}\delta_m^3(\boldsymbol{x})+\cdots$

Kaiser 1984; Bardeen+ 1986 (BBKS)

Redshift space distortion

MPA galaxy catalogues from Millennium Simulation, figure by Olivier Dore

- Blue : matter distribution orange: real space LRGs red: redshift space LRGs
- We infer the distance to galaxies by spectral shift.
- spectral shift = true redshift + peculiar velocity
- As peculiar velocity is correlated with density, it induce the systematic change in bispectrum.

Bispectrum from non-linearities

• For a generic non-linear density field (δ_L = linear)

$$\delta(\mathbf{k}) = K_1^{(s)}(\mathbf{k})\delta_L(\mathbf{k}) + \int \frac{d^3q_1}{(2\pi)^3} \int d^3q_2 \delta^D(\mathbf{k})$$

the leading order (tree-level) bispectrum is given by

 $B(k_1, k_2, k_3) = 2K_1^{(s)}(\mathbf{k}_1)K_1^{(s)}(\mathbf{k}_2)K_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2)P_L(k_1)P_L(k_2) + (\text{cyclic})$

 Next-to-leading order bispectrum requires fourth order kernel (same physics, just a bit messy): $B^{(I-Loop)} = \langle ||4 \rangle + \langle |23 \rangle + \langle 222 \rangle$

 $k - q_1 - q_2) K_2^{(s)}(q_1, q_2) \delta_L(q_1) \delta_L(q_2) + \cdots$

2nd order Kernel in PT

 Perturbation theory with local bias assumption reads the kernels: Heavens+(1998), Scoccimarro+(1999), Jeong (2010).

$$K_{1}^{(s)}(\mathbf{k}) = b_{1} + f\mu^{2}$$

$$K_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \frac{b_{2}}{2} + b_{1}F_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) + f\mu^{2}G_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) + b_{1}\frac{fk\mu}{2}\left[\frac{q_{1z}}{q_{1}^{2}} + \frac{q_{2z}}{q_{2}^{2}}\right] + \frac{(fk\mu)^{2}}{2}\frac{q_{1z}q_{2z}}{q_{1}^{2}q_{2}^{2}}$$

$$\mathbf{z} = \mathbf{line of sight direction, } \boldsymbol{\mu} = \mathbf{k} \cdot \mathbf{z}, \mathbf{and}$$

$$F_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \frac{5}{7} + \frac{2}{7}(\hat{q}_{1} \cdot \hat{q}_{2})^{2} + \frac{\hat{q}_{1} \cdot \hat{q}_{2}}{2}\left(\frac{q_{1}}{q_{2}} + \frac{q_{2}}{q_{1}}\right)$$

$$G_{2}^{(s)}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \frac{3}{7} + \frac{4}{7}(\hat{q}_{1} \cdot \hat{q}_{2})^{2} + \frac{\hat{q}_{1} \cdot \hat{q}_{2}}{2}\left(\frac{q_{1}}{q_{2}} + \frac{q_{2}}{q_{1}}\right)$$

 F_2 and G_2 are maximum when $q_1//q_2$ and 0 when $q_1=-q_2$

Name of triangles $(k_1 \ge k_2 \ge k_3)$

(a) squeezed triangle (k, ~k, >>k,)

(b) elongated triangle $(k_1 = k_2 + k_3)$

(e) equilateral triangle $(k_1 = k_2 = k_3)$ k₂ k_3 k,

Jeong & Komatsu, 2009

(c) folded triangle $(k_1 = 2k_2 = 2k_3)$

Bispectrum of Gaussian Universe

Non-linear terms peaks at Equilateral and Folded triangles.

NG galaxy bispectrum

• MLB formula (Matarrese et al. 1986) reads (high-peak limit) non-Gaussian galaxy bispectrum in terms of matter bispectrum and trispectrum as (See also, Sefusatti 2009)

$$B_{g}(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}) = b_{1}^{3} \left[B_{R}(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}) + \frac{b_{2}}{b_{1}} \left\{ P_{R}(\boldsymbol{k}_{1}) P_{R}(\boldsymbol{k}_{2}) + (2 \text{ cyclic}) \right\} + \frac{\delta_{c}}{2\sigma_{R}^{2}} \int \frac{d^{3}q}{(2\pi)^{3}} T_{R}(\boldsymbol{q}, \boldsymbol{k}_{1} - \boldsymbol{q}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}) + (2 \text{ cylic}) \right]$$

 Note that we assumes that galaxies form at the density threshold in the Eulerian (evolved) density field.

Understanding bispectrum

$B_R(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \mathcal{M}_R(k_1) \mathcal{M}_R(k_2) \mathcal{M}_R(k_3) B_{\Phi}(k_1, k_2, k_3)$ + $2F_2^{(s)}(\mathbf{k}_1, \mathbf{k}_2)P_R(k_1)P_R(k_2) + (2 \text{ cyclic})$

 $B_g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = b_1^3 \left[B_R(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) + \frac{b_2}{b_1} \left\{ P_R(k_1) P_R(k_2) + (2 \text{ cyclic}) \right\} \right]$

$$+ \frac{\delta_c}{2\sigma_R^2} \int \frac{d^3q}{(2\pi)^3} T_R(\boldsymbol{q}, \boldsymbol{k}_1 - \boldsymbol{k}_1) d^3 \boldsymbol{k}_1 - \boldsymbol{k}_1 - \boldsymbol{k}_2 - \boldsymbol{k}_2$$

"'peak" correlation terms $\propto f_{NL}, g_{NL}, T_{NL}(\sim f_{NL}^2)$

Jeong & Komatsu, 2009

linearly evolved primordial bispectrum $\propto f_{NL}$ matter bispectrum due to non-linear gravity Gaussian terms $-\boldsymbol{q}, \boldsymbol{k}_2, \boldsymbol{k}_3) + (2 \text{ cylic})$

Matter bispectrum due to f_{NL}

- Notice the factor of k² in the denominator.
- It sharply peaks at squeezed triangles!

N-body matter bispectrum

scale Larger

- Theory agrees with N-body!
- Solid = theoretical prediction
- data = 140 N-body simulations
 512³ particles in (2 [Gpc/h])³,
 (20 runs for f_{NL}=0, ±100, ±300, ±1000)

$T^{(112)}(k_1,k_2,k_3,k_4)$

• This term is the matter trispetrum generated by nonlinearly evolved primordial "quadspectrum"

$$\langle \delta^{(1)}(\mathbf{k}_1) \delta^{(1)}(\mathbf{k}_2) \delta^{(1)}(\mathbf{k}_3) \delta^{(2)}(\mathbf{k}_4) \rangle$$

$$= \int \frac{d^3 q}{(2\pi)^3} F_2^{(s)}(\boldsymbol{q}, \boldsymbol{k}_4 - \boldsymbol{q}) \langle \delta^{(1)}(\boldsymbol{k}_1) \delta^{(1)}(\boldsymbol{k}_2) \delta^{(1)}(\boldsymbol{k}_3) \delta^{(1)}(\boldsymbol{k}_4 - \boldsymbol{q}) \delta^{(1)}(\boldsymbol{q}) \rangle$$

$$= (2\pi)^3 \left[2 f_{\rm NL} P_m(k_1) \mathcal{M}(k_3) \int d^3 q \mathcal{M}(q) \mathcal{M}(|\boldsymbol{k}_4 - \boldsymbol{q}|) P_{\phi}(q) \left\{ P_{\phi}(|\boldsymbol{k}_4 - \boldsymbol{q}|) + 2 P_{\phi}(k_3) \right\} \right]$$

$$\times F_2^{(s)}(\boldsymbol{q}, \boldsymbol{k}_4 - \boldsymbol{q}) \delta^D(\boldsymbol{k}_{12}) + 4 f_{\rm NL} \mathcal{M}(k_2) \mathcal{M}(k_3) \mathcal{M}(k_{14}) P_m(k_1) F_2^{(s)}(-\boldsymbol{k}_1, \boldsymbol{k}_{14})$$

$$\times \left\{ P_{\phi}(k_2) P_{\phi}(k_3) + P_{\phi}(k_2) P_{\phi}(k_{14}) + P_{\phi}(k_3) P_{\phi}(k_{14}) \right\} + (\text{cyclic 123}) \right] \delta^D(\boldsymbol{k}_{1234}).$$

Shape of $T^{(112)}(k_1, k_2, k_3, k_4)$

Again, Squeezed triangles!

Jeong & Komatsu, 2009 nG terms are important !

Result for mildly squeezed triangles

N-body result for squeezed B_g

 $B_g(k,\alpha)$

scale

.argei

• In Nishimichi et al., 2010, they fit the resulting galaxy bispectrum by

- $=B^{(0)}(k, \alpha) + f_{NL}B^{(1)}(k, \alpha) + f_{NL}^{2}B^{(2)}(k, \alpha)$
- and find a good agreement!
 - α = shape dependence k = scale dependence

Shape dependence of Bg

Shape dependence agrees with the theory prediction in

Jeong & Komatsu, 2009.

 $B^{(0)}(\alpha) \propto \text{const.}$

 $B^{(2)}(k, \alpha) \propto \alpha^3$

 $B_{g}(k,\alpha) = B^{(0)}(k,\alpha) + f_{NL}B^{(1)}(k,\alpha) + f_{NL}^{2}B^{(2)}(k,\alpha)$

Scale dependence of Bg

Prediction for galaxy surveys

• Uncertainty after marginalizing over bias parameters. (Planck=5)

	Z	V [Gpc/h] ³	n _g 10 ⁻⁵ [h/Mpc] ³	k _{max} [h/Mpc]	∆f _{NL} P(k)	∆f _{NL} Bk	∆f _{NL} Bk	Δau_{NL} Bk
SDSS LRG	0.315	I.48	136	0.1	41.80	5.62	12.12	28132
BOSS	0.35	5.66	26.6	0.1	21.25	3.34	5.41	6300
HETDEX	2.7	2.07	38.65	0.2	12.4	3.65	5.19	4240
CIP	2.25	6.54	500	0.2	7.86	1.03	1.35	952
BigBOSS LRG	0.5	13.1	30	0.1	11.59	2.27	3.13	2399
BigBOSS QSO	2.15	138.2	5	0.1	7.80	17.02	17.11	1500
WFIRST	I.5	107.3	93.7	0.1	2.73		1.18	322
EUCLID	1.0	102.9	156	0.1	3.70	0.92	1.00	293

Caution!!

- Signal : assumed thresholded regions of non-Gaussian correction is smaller for normal galaxies
- Noise : assumed Gaussian, diagonal error Covariance between different triangles are ignored
- Survey : ignored window function effect assumed cubic survey volume with constant mean number density
- For more realistic forecast, please wait for Emiliano's talk!

Although shape and scale dependence is correct, amplitude

To measure NG from bispectrum

- Signal : Detailed comparison between theory and N-body simulations is needed (RSD, non-local NG)
- Noise : NG covariance among triangles, optimal estimator
- Mock : How to generate mock from given Pk and Bk? How do we resolve kernel ambiguity? Need N-body? #LPT?
- Random/Correlated errors in window function (e.g. extinction, transparency) can mimic NG.
- Wide-angle effect has to be included for measuring very long wavelength mode

Conclusion

- The real meat (humus, if you are vegetarian) is in the galaxy bispectrum.
- Therefore, we need to work hard to measure NG from the galaxy bispectrum!!